BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 27647781)

  • 1. New Organic Semiconducting Scaffolds by Supramolecular Preorganization: Dye Intercalation and Dye Oxidation and Reduction.
    Li L; Zhao Y; Antonietti M; Shalom M
    Small; 2016 Nov; 12(44):6090-6097. PubMed ID: 27647781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers.
    Shalom M; Inal S; Fettkenhauer C; Neher D; Antonietti M
    J Am Chem Soc; 2013 May; 135(19):7118-21. PubMed ID: 23647353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring carbon nitride properties and photoactivity by interfacial engineering of hydrogen-bonded frameworks.
    Dolai S; Barrio J; Peng G; Grafmüller A; Shalom M
    Nanoscale; 2019 Mar; 11(12):5564-5570. PubMed ID: 30860536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation.
    Yan SC; Li ZS; Zou ZG
    Langmuir; 2010 Mar; 26(6):3894-901. PubMed ID: 20175583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light.
    Xu J; Brenner TJ; Chen Z; Neher D; Antonietti M; Shalom M
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16481-6. PubMed ID: 25238039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monomer sequence design at two solvent interface enables the synthesis of highly photoactive carbon nitride.
    Dolai S; Karjule N; Azoulay A; Barrio J
    RSC Adv; 2019 Aug; 9(45):26091-26096. PubMed ID: 35530998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon- and Nitrogen-Based Organic Frameworks.
    Sakaushi K; Antonietti M
    Acc Chem Res; 2015 Jun; 48(6):1591-600. PubMed ID: 26000989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Carbon-Nitrogen-Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fire-Retardant Material.
    Zhang W; Barrio J; Gervais C; Kocjan A; Yu A; Wang X; Shalom M
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9764-9769. PubMed ID: 29808549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the influence of vanadium, iron and nickel dopants on the morphology, and crystal structure and photocatalytic properties of titanium dioxide based nanopowders.
    Shao GN; Jeon SJ; Haider MS; Abbass N; Kim HT
    J Colloid Interface Sci; 2016 Jul; 474():179-89. PubMed ID: 27124812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation.
    Vyas VS; Haase F; Stegbauer L; Savasci G; Podjaski F; Ochsenfeld C; Lotsch BV
    Nat Commun; 2015 Sep; 6():8508. PubMed ID: 26419805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of heterogeneous photocatalysts based on metal oxides to control the selectivity of chemical reactions.
    Maldotti A; Molinari A
    Top Curr Chem; 2011; 303():185-216. PubMed ID: 21516389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis.
    Xi G; Yue B; Cao J; Ye J
    Chemistry; 2011 Apr; 17(18):5145-54. PubMed ID: 21432916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.
    Abou-Gamra ZM; Ahmed MA
    J Photochem Photobiol B; 2016 Jul; 160():134-41. PubMed ID: 27107333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated oxygen-doping and dye sensitization of graphitic carbon nitride for enhanced visible light photodegradation.
    Liu S; Sun H; Ang HM; Tade MO; Wang S
    J Colloid Interface Sci; 2016 Aug; 476():193-199. PubMed ID: 27218807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors.
    Ishida Y; Chabanne L; Antonietti M; Shalom M
    Langmuir; 2014 Jan; 30(2):447-51. PubMed ID: 24392713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Organization of Dye Molecules in Zeolite L Channels: Synthesis, Properties, and Composite Materials.
    Cao P; Khorev O; Devaux A; Sägesser L; Kunzmann A; Ecker A; Häner R; Brühwiler D; Calzaferri G; Belser P
    Chemistry; 2016 Mar; 22(12):4046-60. PubMed ID: 26864446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two novel POM-based inorganic-organic hybrid compounds: synthesis, structures, magnetic properties, photodegradation and selective absorption of organic dyes.
    Dui XJ; Yang WB; Wu XY; Kuang X; Liao JZ; Yu R; Lu CZ
    Dalton Trans; 2015 May; 44(20):9496-505. PubMed ID: 25915167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Synthesis of Porous Nanorod-Type Graphitic Carbon Nitride/CuO Composite from Cu-Melamine Supramolecular Framework towards Enhanced Photocatalytic Performance.
    Wang J; Xu H; Qian X; Dong Y; Gao J; Qian G; Yao J
    Chem Asian J; 2015 Jun; 10(6):1276-80. PubMed ID: 25786667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials.
    Elacqua E; Lye DS; Weck M
    Acc Chem Res; 2014 Aug; 47(8):2405-16. PubMed ID: 24905869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercalation of alkylamines into an organic polymer crystal.
    Matsumoto A; Odani T; Sada K; Miyata M; Tashiro K
    Nature; 2000 May; 405(6784):328-30. PubMed ID: 10830957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.