BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27647911)

  • 1. Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process.
    Anandakrishnan R; Zhang Z; Donovan-Maiye R; Zuckerman DM
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11220-11225. PubMed ID: 27647911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical comparison of ATP-driven proton pumping mechanisms suggests a kinetic advantage for the rotary process depending on coupling ratio.
    Anandakrishnan R; Zuckerman DM
    PLoS One; 2017; 12(3):e0173500. PubMed ID: 28319179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Torque-coupled thermodynamic model for F_{o}F_{1}-ATPase.
    Ai G; Liu P; Ge H
    Phys Rev E; 2017 May; 95(5-1):052413. PubMed ID: 28618520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torque, chemistry and efficiency in molecular motors: a study of the rotary-chemical coupling in F1-ATPase.
    Mukherjee S; Bora RP; Warshel A
    Q Rev Biophys; 2015 Nov; 48(4):395-403. PubMed ID: 26537397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modeling of ATP synthesis by ATP synthase and its mechanistic implications.
    Nath S; Jain S
    Biochem Biophys Res Commun; 2000 Jun; 272(3):629-33. PubMed ID: 10860805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of rotating proton pumping ATPases.
    Nakanishi-Matsui M; Sekiya M; Nakamoto RK; Futai M
    Biochim Biophys Acta; 2010 Aug; 1797(8):1343-52. PubMed ID: 20170625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Equivalence of Information in the Mitochondrion and the Thermodynamic Efficiency of ATP Synthase.
    Matta CF; Massa L
    Biochemistry; 2015 Sep; 54(34):5376-8. PubMed ID: 26243158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of rigid body mechanics to theoretical description of rotation within F0F1-ATP synthase.
    Nartsissov YR; Mashkovtseva EV
    J Theor Biol; 2006 Sep; 242(2):300-8. PubMed ID: 16603197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of molecular mechanisms of ATP synthesis from the standpoint of the principle of electrical neutrality.
    Nath S
    Biophys Chem; 2017 May; 224():49-58. PubMed ID: 28318906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.
    Iino R; Noji H
    IUBMB Life; 2013 Mar; 65(3):238-46. PubMed ID: 23341301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.
    Feniouk BA; Yoshida M
    Results Probl Cell Differ; 2008; 45():279-308. PubMed ID: 18026702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase.
    Gao YQ; Yang W; Karplus M
    Cell; 2005 Oct; 123(2):195-205. PubMed ID: 16239139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. F(1)-ATPase: a prototypical rotary molecular motor.
    Kinosita K
    Adv Exp Med Biol; 2012; 726():5-16. PubMed ID: 22297508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062125. PubMed ID: 23848645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance phenomenon of the ATP motor as an ultrasensitive biosensor.
    Wang P; Zhang X; Zhang X; Wang X; Li X; Yue J
    Biochem Biophys Res Commun; 2012 Sep; 426(3):399-403. PubMed ID: 22960174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transduction in the F1 motor of ATP synthase.
    Wang H; Oster G
    Nature; 1998 Nov; 396(6708):279-82. PubMed ID: 9834036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site.
    Kuo PH; Nakamoto RK
    Biochem J; 2000 May; 347 Pt 3(Pt 3):797-805. PubMed ID: 10769185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanically driven ATP synthesis by F1-ATPase.
    Itoh H; Takahashi A; Adachi K; Noji H; Yasuda R; Yoshida M; Kinosita K
    Nature; 2004 Jan; 427(6973):465-8. PubMed ID: 14749837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.