These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 27648606)

  • 1. Origin of Stereoselectivity and Substrate/Ligand Recognition in an FAD-Dependent R-Selective Amine Oxidase.
    Nakano S; Yasukawa K; Tokiwa T; Ishikawa T; Ishitsubo E; Matsuo N; Ito S; Tokiwa H; Asano Y
    J Phys Chem B; 2016 Oct; 120(41):10736-10743. PubMed ID: 27648606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porcine kidney d-amino acid oxidase-derived R-amine oxidases with new substrate specificities.
    Yasukawa K; Kawahara N; Motojima F; Nakano S; Asano Y
    Enzymes; 2020; 47():117-136. PubMed ID: 32951821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.
    Trimmer EE; Wanninayake US; Fitzpatrick PF
    Biochemistry; 2017 Apr; 56(14):2024-2030. PubMed ID: 28355481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring D-amino acid oxidase from the pig kidney to R-stereoselective amine oxidase and its use in the deracemization of α-methylbenzylamine.
    Yasukawa K; Nakano S; Asano Y
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4428-31. PubMed ID: 24644036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion of the Substrate Specificity of Porcine Kidney D-Amino Acid Oxidase for
    Yasukawa K; Motojima F; Ono A; Asano Y
    ChemCatChem; 2018 Aug; 10(16):3500-3505. PubMed ID: 30333894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the organic solvent resistance of ω-amine transaminase for enantioselective synthesis of (R)-(+)-1(1-naphthyl)-ethylamine.
    Wang CN; Qiu S; Fan FF; Lyu CJ; Hu S; Zhao WR; Mei JQ; Mei LH; Huang J
    Biotechnol J; 2023 Oct; 18(10):e2300120. PubMed ID: 37337619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site model of (R)-selective ω-transaminase and its application to the production of D-amino acids.
    Park ES; Dong JY; Shin JS
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):651-60. PubMed ID: 23576035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for substrate recognition and specificity in aklavinone-11-hydroxylase from rhodomycin biosynthesis.
    Lindqvist Y; Koskiniemi H; Jansson A; Sandalova T; Schnell R; Liu Z; Mäntsälä P; Niemi J; Schneider G
    J Mol Biol; 2009 Nov; 393(4):966-77. PubMed ID: 19744497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha.
    DuBois JL; Klinman JP
    Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate profiling of cyclohexylamine oxidase and its mutants reveals new biocatalytic potential in deracemization of racemic amines.
    Li G; Ren J; Iwaki H; Zhang D; Hasegawa Y; Wu Q; Feng J; Lau PC; Zhu D
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1681-9. PubMed ID: 23793344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
    Hevel JM; Mills SA; Klinman JP
    Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins.
    Li M; Binda C; Mattevi A; Edmondson DE
    Biochemistry; 2006 Apr; 45(15):4775-84. PubMed ID: 16605246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic determinants of the substrate specificity of CYP2C9: role of B'-C loop residues in providing the pi-stacking anchor site for warfarin binding.
    Haining RL; Jones JP; Henne KR; Fisher MB; Koop DR; Trager WF; Rettie AE
    Biochemistry; 1999 Mar; 38(11):3285-92. PubMed ID: 10079071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing diastereomeric interactions of chiral amine-chiral copper salen adducts by EPR spectroscopy and DFT.
    Murphy DM; Caretti I; Carter E; Fallis IA; Göbel MC; Landon J; Doorslaer SV; Willock DJ
    Inorg Chem; 2011 Aug; 50(15):6944-55. PubMed ID: 21707049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Dynamics of Individual Diastereomeric Complexes on Platinum: Surface Studies Related to Heterogeneous Enantioselective Catalysis.
    Dong Y; Goubert G; Groves MN; Lemay JC; Hammer B; McBreen PH
    Acc Chem Res; 2017 May; 50(5):1163-1170. PubMed ID: 28418642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syncephalastrum racemosum amine oxidase with high catalytic efficiency toward ethanolamine and its application in ethanolamine determination.
    Hirano Y; Chonan K; Murayama K; Sakasegawa SI; Matsumoto H; Sugimori D
    Appl Microbiol Biotechnol; 2016 May; 100(9):3999-4013. PubMed ID: 26691518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of long-range electrostatic interactions to 4-chlorobenzoyl-CoA dehalogenase catalysis: a combined theoretical and experimental study.
    Wu J; Xu D; Lu X; Wang C; Guo H; Dunaway-Mariano D
    Biochemistry; 2006 Jan; 45(1):102-12. PubMed ID: 16388585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase.
    Taki M; Murakawa T; Nakamoto T; Uchida M; Hayashi H; Tanizawa K; Yamamoto Y; Okajima T
    Biochemistry; 2008 Jul; 47(29):7726-33. PubMed ID: 18627131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.