These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 27648733)
1. Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform. Chang L; Gallego-Perez D; Chiang CL; Bertani P; Kuang T; Sheng Y; Chen F; Chen Z; Shi J; Yang H; Huang X; Malkoc V; Lu W; Lee LJ Small; 2016 Nov; 12(43):5971-5980. PubMed ID: 27648733 [TBL] [Abstract][Full Text] [Related]
2. Design of a microchannel-nanochannel-microchannel array based nanoelectroporation system for precise gene transfection. Gao K; Li L; He L; Hinkle K; Wu Y; Ma J; Chang L; Zhao X; Perez DG; Eckardt S; McLaughlin J; Liu B; Farson DF; Lee LJ Small; 2014 Mar; 10(5):1015-23. PubMed ID: 24173879 [TBL] [Abstract][Full Text] [Related]
3. 3D Nanochannel Electroporation for Macromolecular Nucleotide Delivery. Chang L; Chitrakar C; Nouri M Methods Mol Biol; 2020; 2050():69-77. PubMed ID: 31468480 [TBL] [Abstract][Full Text] [Related]
4. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Boukany PE; Morss A; Liao WC; Henslee B; Jung H; Zhang X; Yu B; Wang X; Wu Y; Li L; Gao K; Hu X; Zhao X; Hemminger O; Lu W; Lafyatis GP; Lee LJ Nat Nanotechnol; 2011 Oct; 6(11):747-54. PubMed ID: 22002097 [TBL] [Abstract][Full Text] [Related]
5. 3D Nanochannel Array for High-Throughput Cell Manipulation and Electroporation. Chang L; Black S; Chitrakar C; Nouri M Methods Mol Biol; 2020; 2050():29-41. PubMed ID: 31468477 [TBL] [Abstract][Full Text] [Related]
6. Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Chang L; Gallego-Perez D; Zhao X; Bertani P; Yang Z; Chiang CL; Malkoc V; Shi J; Sen CK; Odonnell L; Yu J; Lu W; Lee LJ Lab Chip; 2015 Aug; 15(15):3147-53. PubMed ID: 26105628 [TBL] [Abstract][Full Text] [Related]
7. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. Xie X; Xu AM; Leal-Ortiz S; Cao Y; Garner CC; Melosh NA ACS Nano; 2013 May; 7(5):4351-8. PubMed ID: 23597131 [TBL] [Abstract][Full Text] [Related]
8. Enhanced nanomagnetic gene transfection of human prenatal cardiac progenitor cells and adult cardiomyocytes. Subramanian M; Lim J; Dobson J PLoS One; 2013; 8(7):e69812. PubMed ID: 23936108 [TBL] [Abstract][Full Text] [Related]
9. Nonendocytic delivery of lipoplex nanoparticles into living cells using nanochannel electroporation. Boukany PE; Wu Y; Zhao X; Kwak KJ; Glazer PJ; Leong K; Lee LJ Adv Healthc Mater; 2014 May; 3(5):682-9. PubMed ID: 23996973 [TBL] [Abstract][Full Text] [Related]
10. Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device. Li L Methods Mol Biol; 2020; 2050():21-27. PubMed ID: 31468476 [TBL] [Abstract][Full Text] [Related]
11. Isolation and Nanoscale Electroporation of Primary Neuronal Cultures In Situ. Alzate-Correa D; Lawrence W; Higuita-Castro N; Gallego-Perez D Methods Mol Biol; 2020; 2050():145-152. PubMed ID: 31468488 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA miR-24-3p Reduces Apoptosis and Regulates Keap1-Nrf2 Pathway in Mouse Cardiomyocytes Responding to Ischemia/Reperfusion Injury. Xiao X; Lu Z; Lin V; May A; Shaw DH; Wang Z; Che B; Tran K; Du H; Shaw PX Oxid Med Cell Longev; 2018; 2018():7042105. PubMed ID: 30622671 [TBL] [Abstract][Full Text] [Related]
13. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Chang L; Bertani P; Gallego-Perez D; Yang Z; Chen F; Chiang C; Malkoc V; Kuang T; Gao K; Lee LJ; Lu W Nanoscale; 2016 Jan; 8(1):243-52. PubMed ID: 26309218 [TBL] [Abstract][Full Text] [Related]
14. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Chen J; Huang ZP; Seok HY; Ding J; Kataoka M; Zhang Z; Hu X; Wang G; Lin Z; Wang S; Pu WT; Liao R; Wang DZ Circ Res; 2013 Jun; 112(12):1557-66. PubMed ID: 23575307 [TBL] [Abstract][Full Text] [Related]
15. Nanoelectroporation and Collection of Genetically Modified Exosomes in Primary Cultures of Dendritic Cells. Duarte-Sanmiguel S; Higuita-Castro N; Gallego-Perez D Methods Mol Biol; 2020; 2050():79-84. PubMed ID: 31468481 [TBL] [Abstract][Full Text] [Related]
16. Production of Cardiomyocytes by microRNA-Mediated Reprogramming in Optimized Reprogramming Media. Wang X; Hodgkinson CP; Dzau VJ Methods Mol Biol; 2021; 2239():47-59. PubMed ID: 33226612 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-21-containing microvesicles from tubular epithelial cells promote cardiomyocyte hypertrophy. Di J; Yang M; Zhou H; Li M; Zhao J Ren Fail; 2021 Dec; 43(1):391-400. PubMed ID: 33632070 [TBL] [Abstract][Full Text] [Related]
18. miR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival. Yang Y; Del Re DP; Nakano N; Sciarretta S; Zhai P; Park J; Sayed D; Shirakabe A; Matsushima S; Park Y; Tian B; Abdellatif M; Sadoshima J Circ Res; 2015 Oct; 117(10):891-904. PubMed ID: 26333362 [TBL] [Abstract][Full Text] [Related]
19. Enhanced delivery of microRNA mimics to cardiomyocytes using ultrasound responsive microbubbles reverses hypertrophy in an in-vitro model. Gill SL; O'Neill H; McCoy RJ; Logeswaran S; O'Brien F; Stanton A; Kelly H; Duffy GP Technol Health Care; 2014; 22(1):37-51. PubMed ID: 24398813 [TBL] [Abstract][Full Text] [Related]
20. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications. Heo J; Kwon HJ; Jeon H; Kim B; Kim SJ; Lim G Nanoscale; 2014 Aug; 6(16):9681-8. PubMed ID: 24993028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]