These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 27648758)
1. Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel. Son H; Park S; Beuchat LR; Kim H; Ryu JH Int J Food Microbiol; 2016 Dec; 238():165-171. PubMed ID: 27648758 [TBL] [Abstract][Full Text] [Related]
2. Development of non-pathogenic bacterial biofilms on the surface of stainless steel which are inhibitory to Salmonella enterica. Kim Y; Kim H; Beuchat LR; Ryu JH Food Microbiol; 2018 Feb; 69():136-142. PubMed ID: 28941894 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of Listeria monocytogenes using biofilms of non-pathogenic soil bacteria (Streptomyces spp.) on stainless steel under desiccated condition. Kim Y; Kim H; Beuchat LR; Ryu JH Food Microbiol; 2019 Jun; 79():61-65. PubMed ID: 30621876 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of Escherichia coli O157:H7 on stainless steel upon exposure to Paenibacillus polymyxa biofilms. Kim S; Bang J; Kim H; Beuchat LR; Ryu JH Int J Food Microbiol; 2013 Nov; 167(3):328-36. PubMed ID: 24184611 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of Escherichia coli O157:H7 on stainless steel using Pseudomonas veronii biofilms. Kim Y; Kim H; Beuchat LR; Ryu JH Lett Appl Microbiol; 2018 May; 66(5):394-399. PubMed ID: 29444347 [TBL] [Abstract][Full Text] [Related]
6. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Bae YM; Baek SY; Lee SY Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983 [TBL] [Abstract][Full Text] [Related]
7. Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Ait Ouali F; Al Kassaa I; Cudennec B; Abdallah M; Bendali F; Sadoun D; Chihib NE; Drider D Int J Food Microbiol; 2014 Nov; 191():116-24. PubMed ID: 25261829 [TBL] [Abstract][Full Text] [Related]
8. Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces. Hingston PA; Stea EC; Knøchel S; Hansen T Food Microbiol; 2013 Oct; 36(1):46-56. PubMed ID: 23764219 [TBL] [Abstract][Full Text] [Related]
9. Development of Desiccation-Tolerant Probiotic Biofilms Inhibitory for Growth of Foodborne Pathogens on Stainless Steel Surfaces. Kim JH; Lee ES; Song KJ; Kim BM; Ham JS; Oh MH Foods; 2022 Mar; 11(6):. PubMed ID: 35327253 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. Nam H; Seo HS; Bang J; Kim H; Beuchat LR; Ryu JH Int J Food Microbiol; 2014 Oct; 188():122-7. PubMed ID: 25090607 [TBL] [Abstract][Full Text] [Related]
11. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Nan L; Yang K; Ren G Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():356-61. PubMed ID: 25842145 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of Kim SH; Park SH; Kim SS; Kang DH J Food Prot; 2019 Sep; 82(9):1496-1500. PubMed ID: 31411506 [TBL] [Abstract][Full Text] [Related]
13. Biofilm Formation of Staphylococcus aureus on Various Surfaces and Their Resistance to Chlorine Sanitizer. Lee JS; Bae YM; Lee SY; Lee SY J Food Sci; 2015 Oct; 80(10):M2279-86. PubMed ID: 26417663 [TBL] [Abstract][Full Text] [Related]
14. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials. Adachi K; Tsurumoto T; Yonekura A; Nishimura S; Kajiyama S; Hirakata Y; Shindo H J Orthop Sci; 2007 Mar; 12(2):178-84. PubMed ID: 17393274 [TBL] [Abstract][Full Text] [Related]
15. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. Lee SHI; Cappato LP; Corassin CH; Cruz AG; Oliveira CAF J Dairy Sci; 2016 Mar; 99(3):2384-2390. PubMed ID: 26723125 [TBL] [Abstract][Full Text] [Related]
16. The impact of thermal cycling on Staphylococcus aureus biofilm growth on stainless steel and titanium orthopaedic plates. Akens MK; Chien C; Katchky RN; Kreder HJ; Finkelstein J; Whyne CM BMC Musculoskelet Disord; 2018 Jul; 19(1):260. PubMed ID: 30049271 [TBL] [Abstract][Full Text] [Related]
17. Effective removal of staphylococcal biofilms on various food contact surfaces by Staphylococcus aureus phage endolysin LysCSA13. Cha Y; Son B; Ryu S Food Microbiol; 2019 Dec; 84():103245. PubMed ID: 31421782 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Pathogenic-Mixed Biofilm Formation of Gambino E; Maione A; Guida M; Albarano L; Carraturo F; Galdiero E; Di Onofrio V Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329426 [TBL] [Abstract][Full Text] [Related]
19. Effect of natural antibacterial clays against single biofilm formation by Staphylococcus aureus and Salmonella Typhimurium bacteria on a stainless-steel surface. Wan Omar WH; Mahyudin NA; Azmi NN; Mahmud Ab Rashid NK; Ismail R; Mohd Yusoff MHY; Khairil Mokhtar NF; Sharples GJ Int J Food Microbiol; 2023 Jun; 394():110184. PubMed ID: 36996693 [TBL] [Abstract][Full Text] [Related]