These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2764903)

  • 1. Study of the flux and transition time control coefficient profiles in a metabolic system in vitro and the effect of an external stimulator.
    Torres NV; Souto R; Meléndez-Hevia E
    Biochem J; 1989 Jun; 260(3):763-9. PubMed ID: 2764903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control-pattern analysis of metabolic pathways. Flux and concentration control in linear pathways.
    Hofmeyr JH
    Eur J Biochem; 1989 Dec; 186(1-2):343-54. PubMed ID: 2598934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extension to the metabolic control theory taking into account correlations between enzyme concentrations.
    Lion S; Gabriel F; Bost B; Fiévet J; Dillmann C; de Vienne D
    Eur J Biochem; 2004 Nov; 271(22):4375-91. PubMed ID: 15560779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis.
    Zammit VA; Beis I; Newsholme EA
    Biochem J; 1978 Sep; 174(3):989-98. PubMed ID: 215127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of rabbit muscle phosphofructokinase at pH8.
    Merry S; Britton HG
    Biochem J; 1985 Feb; 226(1):13-28. PubMed ID: 3156586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of steady-state control in complex metabolic networks.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(11-12):1567-78. PubMed ID: 4091833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes.
    Rapoport TA; Heinrich R; Rapoport SM
    Biochem J; 1976 Feb; 154(2):449-69. PubMed ID: 132930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of large metabolic responses. Constraints and sensitivity analysis.
    Acerenza L
    J Theor Biol; 2000 Nov; 207(2):265-82. PubMed ID: 11034833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of the control of phosphorylation-coupled respiration in isolated plant mitochondria.
    Padovan AC; Dry IB; Wiskich JT
    Plant Physiol; 1989 Jul; 90(3):928-33. PubMed ID: 16666899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from various muscles.
    Vaughan H; Thornton SD; Newsholme EA
    Biochem J; 1973 Mar; 132(3):527-35. PubMed ID: 4353381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic control therapy and biochemical systems theory: different objectives, different assumptions, different results.
    Cornish-Bowden A
    J Theor Biol; 1989 Feb; 136(4):365-77. PubMed ID: 2682007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between enzymatic flux capacities and metabolic flux rates: nonequilibrium reactions in muscle glycolysis.
    Suarez RK; Staples JF; Lighton JR; West TG
    Proc Natl Acad Sci U S A; 1997 Jun; 94(13):7065-9. PubMed ID: 9192692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of metabolic pathways. A system in vitro to study the control of flux.
    Torres NV; Mateo F; Meléndez-Hevia E; Kacser H
    Biochem J; 1986 Feb; 234(1):169-74. PubMed ID: 3707539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux.
    Thomas S; Mooney PJ; Burrell MM; Fell DA
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):119-27. PubMed ID: 9078251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose 2,6-bisphosphate and the control of glycolysis by glucocorticoids and by other agents in rat hepatoma cells.
    Loiseau AM; Rousseau GG; Hue L
    Cancer Res; 1985 Sep; 45(9):4263-9. PubMed ID: 3161612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of metabolic pathway modeling.
    Moreno-Sánchez R; Encalada R; Marín-Hernández A; Saavedra E
    FEBS J; 2008 Jul; 275(13):3454-69. PubMed ID: 18510554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of metabolic control analysis to the study of toxic effects of copper in muscle glycolysis.
    Jannaschk D; Burgos M; Centerlles JJ; Ovadi J; Cascante M
    FEBS Lett; 1999 Feb; 445(1):144-8. PubMed ID: 10069389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical analysis of multienzyme systems. II. Steady state and transient control.
    Heinrich R; Rapoport TA
    Biosystems; 1975 Jul; 7(1):130-6. PubMed ID: 125616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro.
    Dimitriadis G; Parry-Billings M; Bevan S; Dunger D; Piva T; Krause U; Wegener G; Newsholme EA
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):269-74. PubMed ID: 1637311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redistribution of the flux-control coefficients in mitochondrial oxidative phosphorylations in the course of brain edema.
    Rigoulet M; Averet N; Mazat JP; Guerin B; Cohadon F
    Biochim Biophys Acta; 1988 Jan; 932(1):116-23. PubMed ID: 3337798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.