BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 27649044)

  • 1. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.
    Zhao T; Goodwin ED; Guo J; Wang H; Diroll BT; Murray CB; Kagan CR
    ACS Nano; 2016 Oct; 10(10):9267-9273. PubMed ID: 27649044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells.
    Tan F; Wang Z; Qu S; Cao D; Liu K; Jiang Q; Yang Y; Pang S; Zhang W; Lei Y; Wang Z
    Nanoscale; 2016 May; 8(19):10198-204. PubMed ID: 27124650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inverted ZnO/P3HT:PbS bulk-heterojunction hybrid solar cell with a CdSe quantum dot interface buffer layer.
    Thomas A; Vinayakan R; Ison VV
    RSC Adv; 2020 Apr; 10(28):16693-16699. PubMed ID: 35498855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S; Stavrinadis A; Gupta S; Konstantatos G
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer.
    Ren H; Xu A; Pan Y; Qin D; Hou L; Wang D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing PbS Colloidal Quantum Dot Tandem Solar Cell Performance by Graded Band Alignment.
    Gao Y; Zheng J; Chen W; Yuan L; Teh ZL; Yang J; Cui X; Conibeer G; Patterson R; Huang S
    J Phys Chem Lett; 2019 Oct; 10(19):5729-5734. PubMed ID: 31510742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot-graphene nanocomposites.
    Eck M; Pham CV; Züfle S; Neukom M; Sessler M; Scheunemann D; Erdem E; Weber S; Borchert H; Ruhstaller B; Krüger M
    Phys Chem Chem Phys; 2014 Jun; 16(24):12251-60. PubMed ID: 24820059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.
    Choi H; Song JH; Jang J; Mai XD; Kim S; Jeong S
    Nanoscale; 2015 Nov; 7(41):17473-81. PubMed ID: 26440646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MgCl
    Gao Y; Patterson R; Hu L; Yuan L; Zhang Z; Hu Y; Chen Z; Teh ZL; Conibeer G; Huang S
    Nanotechnology; 2019 Feb; 30(8):085403. PubMed ID: 30248023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PbS/Cd₃P₂ quantum heterojunction colloidal quantum dot solar cells.
    Cao H; Liu Z; Zhu X; Peng J; Hu L; Xu S; Luo M; Ma W; Tang J; Liu H
    Nanotechnology; 2015 Jan; 26(3):035401. PubMed ID: 25548866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient PbSe Colloidal Quantum Dot Solar Cells Using SnO
    Zhu M; Liu X; Liu S; Chen C; He J; Liu W; Yang J; Gao L; Niu G; Tang J; Zhang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2566-2571. PubMed ID: 31854183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes.
    Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T
    ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum-Dot Tandem Solar Cells Based on a Solution-Processed Nanoparticle Intermediate Layer.
    Hu L; Wang Y; Shivarudraiah SB; Yuan J; Guan X; Geng X; Younis A; Hu Y; Huang S; Wu T; Halpert JE
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2313-2318. PubMed ID: 31840973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.
    Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells.
    Lee W; Kang SH; Kim JY; Kolekar GB; Sung YE; Han SH
    Nanotechnology; 2009 Aug; 20(33):335706. PubMed ID: 19636095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.