These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 2764910)
1. Testing transport models and transport data by means of kinetic rejection criteria. Krupka RM Biochem J; 1989 Jun; 260(3):885-91. PubMed ID: 2764910 [TBL] [Abstract][Full Text] [Related]
2. A general kinetic analysis of transport. Tests of the carrier model based on predicted relations among experimental parameters. Devés R; Krupka RM Biochim Biophys Acta; 1979 Oct; 556(3):533-47. PubMed ID: 486476 [TBL] [Abstract][Full Text] [Related]
3. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics. Sanders D J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of transport systems dependent on periplasmic binding proteins. Krupka RM Biochim Biophys Acta; 1992 Sep; 1110(1):1-10. PubMed ID: 1390828 [TBL] [Abstract][Full Text] [Related]
5. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers. Ginsburg H Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020 [TBL] [Abstract][Full Text] [Related]
6. Apparent noncompetitive inhibition of choline transport in erythrocytes by inhibitors bound at the substrate site. Devés R; Krupka RM J Membr Biol; 1983; 74(3):183-9. PubMed ID: 6887231 [TBL] [Abstract][Full Text] [Related]
7. General rate equations and rejection criteria for the rapid equilibrium carrier model of cotransport. Turner RJ Biochim Biophys Acta; 1982 Aug; 689(3):444-50. PubMed ID: 7126559 [TBL] [Abstract][Full Text] [Related]
8. Kinetic analysis of a family of cotransport models. Turner RJ Biochim Biophys Acta; 1981 Dec; 649(2):269-80. PubMed ID: 7317398 [TBL] [Abstract][Full Text] [Related]
9. Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters. Sanders D; Hansen UP; Gradmann D; Slayman CL J Membr Biol; 1984; 77(2):123-52. PubMed ID: 6708088 [TBL] [Abstract][Full Text] [Related]
11. Nucleoside transport in human erythrocytes. A simple carrier with directional symmetry and differential mobility of loaded and empty carrier. Plagemann PG; Wohlhueter RM; Erbe J J Biol Chem; 1982 Oct; 257(20):12069-74. PubMed ID: 7118930 [TBL] [Abstract][Full Text] [Related]
12. L-Leucine transport in human red blood cells: a detailed kinetic analysis. Rosenberg R J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478 [TBL] [Abstract][Full Text] [Related]
13. Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport. Britton HG Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):187-99. PubMed ID: 9003418 [TBL] [Abstract][Full Text] [Related]
14. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase. Bardsley WG; Leff P; Kavanagh J; Waight RD Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369 [TBL] [Abstract][Full Text] [Related]
15. Presteady-state kinetics and carrier-mediated transport: a theoretical analysis. Wierzbicki W; Berteloot A; Roy G J Membr Biol; 1990 Jul; 117(1):11-27. PubMed ID: 2402006 [TBL] [Abstract][Full Text] [Related]
16. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models. Eilam Y Biochim Biophys Acta; 1975 Sep; 401(3):364-9. PubMed ID: 1182144 [TBL] [Abstract][Full Text] [Related]
17. The relationship between substrate dissociation constants derived from transport experiments and from equilibrium binding assays. Implications of the conventional carrier model. Devés R; Krupka RM Biochim Biophys Acta; 1984 Jan; 769(2):455-60. PubMed ID: 6696893 [TBL] [Abstract][Full Text] [Related]
18. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations. Goličnik M Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903 [TBL] [Abstract][Full Text] [Related]
19. The steady-state Michaelis-Menten analysis of P-glycoprotein mediated transport through a confluent cell monolayer cannot predict the correct Michaelis constant Km. Bentz J; Tran TT; Polli JW; Ayrton A; Ellens H Pharm Res; 2005 Oct; 22(10):1667-77. PubMed ID: 16180124 [TBL] [Abstract][Full Text] [Related]
20. Testing models for transport systems dependent on periplasmic binding proteins. Krupka RM Biochim Biophys Acta; 1992 Sep; 1110(1):11-9. PubMed ID: 1390830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]