These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27649186)

  • 1. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring.
    Niewiadomska-Szynkiewicz E; Sikora A; Marks M
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Mobile Wireless Network for Toxic Gas Cloud Monitoring and Tracking.
    Krzysztoń M; Niewiadomska-Szynkiewicz E
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.
    Song G; Zhou Y; Ding F; Song A
    Sensors (Basel); 2008 Nov; 8(11):7259-7274. PubMed ID: 27873927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Optimization from Two Virtual Physical Force Algorithms for Dynamic Node Deployment in WSN Applications.
    Li Q; Yi Q; Tang R; Qian X; Yuan K; Liu S
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring.
    Uddin MA; Mansour A; Jeune DL; Ayaz M; Aggoune EM
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Local 3D Voronoi-Based Optimization Method for Sensor Network Deployment in Complex Indoor Environments.
    Afghantoloee A; Mostafavi MA
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deployment-based lifetime optimization model for homogeneous Wireless Sensor Network under retransmission.
    Li R; Liu X; Xie W; Huang N
    Sensors (Basel); 2014 Dec; 14(12):23697-724. PubMed ID: 25513822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of a Mobile Node into a Hybrid Wireless Sensor Network for Urban Environments.
    Socarrás Bertiz CA; Fernández Lozano JJ; Gomez-Ruiz JA; García-Cerezo A
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Optimized Node Deployment Solution Based on a Virtual Spring Force Algorithm for Wireless Sensor Network Applications.
    Deng X; Yu Z; Tang R; Qian X; Yuan K; Liu S
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned Vehicles' Placement Optimisation for Internet of Things and Internet of Unmanned Vehicles.
    Dragulinescu AM; Halunga S; Zamfirescu C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.
    Aguirre E; Lopez-Iturri P; Azpilicueta L; Astrain JJ; Villadangos J; Falcone F
    Sensors (Basel); 2015 Feb; 15(2):3766-88. PubMed ID: 25664434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.
    Wu CQ; Wang L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28994749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New MANET wormhole detection algorithm based on traversal time and hop count analysis.
    Karlsson J; Dooley LS; Pulkkis G
    Sensors (Basel); 2011; 11(12):11122-40. PubMed ID: 22247657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collaborative Neural Network Algorithm for Event-Driven Deployment in Wireless Sensor and Robot Networks.
    Zhuang Y; Wu C; Wu H; Zhang Z; Gao Y; Li L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32414214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks.
    González-Parada E; Cano-García J; Aguilera F; Sandoval F; Urdiales C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28075364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Optimal Location Distribution for Deployment of Flying Base Stations as On-Demand Connectivity Enablers in Real-World Scenarios.
    Pokorny J; Seda P; Seda M; Hosek J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks.
    Urdiales C; Aguilera F; González-Parada E; Cano-García J; Sandoval F
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Sensing Technologies for Indoor Autonomous Mobile Robots.
    Liu Y; Wang S; Xie Y; Xiong T; Wu M
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks.
    Li X; Li D; Dong Z; Hu Y; Liu C
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Game-theoretic approach for improving cooperation in wireless multihop networks.
    Ng SK; Seah WK
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):559-74. PubMed ID: 20211801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.