These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27649476)

  • 1. Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.
    Cimini A; Moresi M
    J Food Sci; 2016 Oct; 81(10):E2521-E2528. PubMed ID: 27649476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a Kieselguhr- and PVPP-Free Clarification and Stabilization Process of Rough Beer at Room-Temperature Conditions.
    Cimini A; Moresi M
    J Food Sci; 2018 Jan; 83(1):129-137. PubMed ID: 29178150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative Rough Beer Conditioning Process Free from Diatomaceous Earth and Polyvinylpolypyrrolidone.
    Cimini A; Moresi M
    Foods; 2020 Sep; 9(9):. PubMed ID: 32899206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.
    Jørgensen CE; Abrahamsen RK; Rukke EO; Johansen AG; Schüller RB; Skeie SB
    J Dairy Sci; 2016 Aug; 99(8):6164-6179. PubMed ID: 27265169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions.
    Gehlert G; Luque S; Belfort G
    Biotechnol Prog; 1998; 14(6):931-42. PubMed ID: 9841658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-phase bioconversion product recovery by microfiltration I. Steady state studies.
    Conrad PB; Lee SS
    Biotechnol Bioeng; 1998 Mar; 57(6):631-41. PubMed ID: 10099243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.
    Adams MC; Barbano DM
    J Dairy Sci; 2016 Jan; 99(1):167-82. PubMed ID: 26519975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology.
    Luque S; Mallubhotla H; Gehlert G; Kuriyel R; Dzengeleski S; Pearl S; Belfort G
    Biotechnol Bioeng; 1999 Nov; 65(3):247-57. PubMed ID: 10486122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of thermophilic hydrolysis reactor effluent with ceramic microfiltration membranes.
    Tuczinski M; Saravia F; Horn H
    Bioprocess Biosyst Eng; 2018 Nov; 41(11):1561-1571. PubMed ID: 30003378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk.
    Tomasula PM; Mukhopadhyay S; Datta N; Porto-Fett A; Call JE; Luchansky JB; Renye J; Tunick M
    J Dairy Sci; 2011 Sep; 94(9):4277-91. PubMed ID: 21854901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfiltration of skim milk and modified skim milk using a 0.1-µm ceramic uniform transmembrane pressure system at temperatures of 50, 55, 60, and 65°C.
    Hurt EE; Adams MC; Barbano DM
    J Dairy Sci; 2015 Feb; 98(2):765-80. PubMed ID: 25497798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7527-43. PubMed ID: 26298765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of cross-flow microfiltration for removal of microorganisms associated with unpasteurized liquid egg white from process plant.
    Mukhopadhyay S; Tomasula PM; Van Hekken D; Luchansky JB; Call JE; Porto-Fett A
    J Food Sci; 2009 Aug; 74(6):M319-27. PubMed ID: 19723218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.
    Jedidi I; Saïdi S; Khemakhem S; Larbot A; Elloumi-Ammar N; Fourati A; Charfi A; Salah AB; Amar RB
    J Hazard Mater; 2009 Dec; 172(1):152-8. PubMed ID: 19699033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.
    Zulewska J; Newbold M; Barbano DM
    J Dairy Sci; 2009 Apr; 92(4):1361-77. PubMed ID: 19307617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.
    Tremblay-Marchand D; Doyen A; Britten M; Pouliot Y
    J Dairy Sci; 2016 Jul; 99(7):5230-5243. PubMed ID: 27132105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling flux in tangential flow filtration using a reverse asymmetric membrane for Chinese hamster ovary cell clarification.
    Zhang D; Patel P; Strauss D; Qian X; Wickramasinghe SR
    Biotechnol Prog; 2021 May; 37(3):e3115. PubMed ID: 33350596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of linear velocity and flux on performance of ceramic graded permeability membranes when processing skim milk at 50°C.
    Zulewska J; Barbano DM
    J Dairy Sci; 2014 May; 97(5):2619-32. PubMed ID: 24612815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the efficiency of removal of whey protein from sweet whey with ceramic microfiltration membranes.
    Carter B; DiMarzo L; Pranata J; Barbano DM; Drake M
    J Dairy Sci; 2021 Jul; 104(7):7534-7543. PubMed ID: 33814142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Membrane Pore Size on the Clarification Performance of Grape Marc Extract by Microfiltration.
    Mora F; Pérez K; Quezada C; Herrera C; Cassano A; Ruby-Figueroa R
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31698840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.