BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27649548)

  • 21. 3D-QSAR Study on dihydro-1,3,5-triazines and their spiro derivatives as DHFR inhibitors by comparative molecular field analysis (CoMFA).
    Ma X; Xiang G; Yap CW; Chui WK
    Bioorg Med Chem Lett; 2012 May; 22(9):3194-7. PubMed ID: 22483391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative structure-activity relationships of 2, 4-diamino-5-(2-X-benzyl)pyrimidines versus bacterial and avian dihydrofolate reductase.
    Selassie CD; Gan WX; Kallander LS; Klein TE
    J Med Chem; 1998 Oct; 41(22):4261-72. PubMed ID: 9784101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consideration of the pH-dependent inhibition of dihydrofolate reductase by methotrexate.
    Cannon WR; Garrison BJ; Benkovic SJ
    J Mol Biol; 1997 Aug; 271(4):656-68. PubMed ID: 9281432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative structure-activity relationships by evolved neural networks for the inhibition of dihydrofolate reductase by pyrimidines.
    Landavazo DG; Fogel GB; Fogel DB
    Biosystems; 2002 Feb; 65(1):37-47. PubMed ID: 11888662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational modification of the lead molecule: Enhancement in the anticancer and dihydrofolate reductase inhibitory activity.
    Kaur J; Kaur S; Singh P
    Bioorg Med Chem Lett; 2016 Apr; 26(8):1936-40. PubMed ID: 26979156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of human dihydrofolate reductase activity and expression.
    Abali EE; Skacel NE; Celikkaya H; Hsieh YC
    Vitam Horm; 2008; 79():267-92. PubMed ID: 18804698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative structure-activity relationships for cycloguanil analogs as PfDHFR inhibitors using mathematical molecular descriptors.
    Basak SC; Mills D
    SAR QSAR Environ Res; 2010 Apr; 21(3-4):215-29. PubMed ID: 20544548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional quantitative structure-activity and structure-selectivity relationships of dihydrofolate reductase inhibitors.
    Sutherland JJ; Weaver DF
    J Comput Aided Mol Des; 2004 May; 18(5):309-31. PubMed ID: 15595459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of binding and activity of 8-alkyl-pterins and 8-alkyl-N5-deaza-pterins with dihydrofolate reductase.
    Ivery MT; Gready JE
    Adv Exp Med Biol; 1993; 338():525-8. PubMed ID: 8304172
    [No Abstract]   [Full Text] [Related]  

  • 30. Computational predictions of binding affinities to dihydrofolate reductase: synthesis and biological evaluation of methotrexate analogues.
    Graffner-Nordberg M; Marelius J; Ohlsson S; Persson A; Swedberg G; Andersson P; Andersson SE; Aqvist J; Hallberg A
    J Med Chem; 2000 Oct; 43(21):3852-61. PubMed ID: 11052790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase.
    Srinivasan B; Tonddast-Navaei S; Skolnick J
    Eur J Med Chem; 2015 Oct; 103():600-14. PubMed ID: 26414808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new procedure for improving the predictiveness of CoMFA models and its application to a set of dihydrofolate reductase inhibitors.
    Kroemer RT; Hecht P
    J Comput Aided Mol Des; 1995 Oct; 9(5):396-406. PubMed ID: 8594157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate reductase: toward the identification of new potent drug leads.
    Joska TM; Anderson AC
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3435-43. PubMed ID: 17005826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes.
    Gilbert IH
    Biochim Biophys Acta; 2002 Jul; 1587(2-3):249-57. PubMed ID: 12084467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of neural network QSPR models for Hansch substituent constants. 2. Applications in QSAR studies of HIV-1 reverse transcriptase and dihydrofolate reductase inhibitors.
    Chiu TL; So SS
    J Chem Inf Comput Sci; 2004; 44(1):154-60. PubMed ID: 14741022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational drug design, synthesis and biological evaluation of dihydrofolate reductase inhibitors as antituberculosis agents.
    Tawari NR; Bag S; Raju A; Lele AC; Bairwa R; Ray MK; Rajan MG; Nawale LU; Sarkar D; Degani MS
    Future Med Chem; 2015; 7(8):979-88. PubMed ID: 26062396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eukaryotic dihydrofolate reductase.
    Blakley RL
    Adv Enzymol Relat Areas Mol Biol; 1995; 70():23-102. PubMed ID: 8638484
    [No Abstract]   [Full Text] [Related]  

  • 38. Characterization and comparative studies of zebrafish and human recombinant dihydrofolate reductases--inhibition by folic acid and polyphenols.
    Kao TT; Wang KC; Chang WN; Lin CY; Chen BH; Wu HL; Shi GY; Tsai JN; Fu TF
    Drug Metab Dispos; 2008 Mar; 36(3):508-16. PubMed ID: 18056255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification, Characterization and Molecular Modelling Studies of Schistosoma mansoni Dihydrofolate Reductase Inhibitors: From Assay Development to Hit Identification.
    Teles ALB; Silva RR; Ko M; Ferreira GM; Pita SDR; Trossini GHG; Carvalho P; Castilho MS
    Curr Top Med Chem; 2018; 18(5):406-417. PubMed ID: 29741139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.
    Shelke RU; Degani MS; Raju A; Ray MK; Rajan MG
    Arch Pharm (Weinheim); 2016 Aug; 349(8):602-13. PubMed ID: 27320965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.