BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27649809)

  • 1. Faster kinetics of quantal catecholamine release in mouse chromaffin cells stimulated with acetylcholine, compared with other secretagogues.
    Calvo-Gallardo E; López-Gil Á; Méndez-López I; Martínez-Ramírez C; Padín JF; García AG
    J Neurochem; 2016 Dec; 139(5):722-736. PubMed ID: 27649809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na
    López-Gil A; Nanclares C; Méndez-López I; Martínez-Ramírez C; de Los Rios C; Padín-Nogueira JF; Montero M; Gandía L; García AG
    J Physiol; 2017 Mar; 595(6):2129-2146. PubMed ID: 27982456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats.
    Miranda-Ferreira R; de Pascual R; de Diego AM; Caricati-Neto A; Gandía L; Jurkiewicz A; García AG
    J Pharmacol Exp Ther; 2008 Feb; 324(2):685-93. PubMed ID: 17962518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smaller quantal size and faster kinetics of single exocytotic events in chromaffin cells from the APP/PS1 mouse model of Alzheimer's disease.
    de Diego AM; Lorrio S; Calvo-Gallardo E; García AG
    Biochem Biophys Res Commun; 2012 Nov; 428(4):482-6. PubMed ID: 23123627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.
    Calvo-Gallardo E; de Pascual R; Fernández-Morales JC; Arranz-Tagarro JA; Maroto M; Nanclares C; Gandía L; de Diego AM; Padín JF; García AG
    Am J Physiol Cell Physiol; 2015 Jan; 308(1):C1-19. PubMed ID: 25377090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade by nanomolar resveratrol of quantal catecholamine release in chromaffin cells.
    Fernández-Morales JC; Yáñez M; Orallo F; Cortés L; González JC; Hernández-Guijo JM; García AG; de Diego AM
    Mol Pharmacol; 2010 Oct; 78(4):734-44. PubMed ID: 20631052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the endoplasmic reticulum and mitochondria on quantal catecholamine release from chromaffin cells of control and hypertensive rats.
    Miranda-Ferreira R; de Pascual R; Caricati-Neto A; Gandía L; Jurkiewicz A; García AG
    J Pharmacol Exp Ther; 2009 Apr; 329(1):231-40. PubMed ID: 19131584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats.
    Segura-Chama P; López-Bistrain P; Pérez-Armendáriz EM; Jiménez-Pérez N; Millán-Aldaco D; Hernández-Cruz A
    Pflugers Arch; 2015 Nov; 467(11):2307-23. PubMed ID: 25791627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered excitability and exocytosis in chromaffin cells from the R6/1 mouse model of Huntington's disease is linked to over-expression of mutated huntingtin.
    Martínez-Ramírez C; Baraibar AM; Nanclares C; Méndez-López I; Gómez A; Muñoz MP; de Diego AMG; Gandía L; Casarejos MJ; García AG
    J Neurochem; 2018 Nov; 147(4):454-476. PubMed ID: 30182387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmalemmal sodium-calcium exchanger shapes the calcium and exocytotic signals of chromaffin cells at physiological temperature.
    Padín JF; Fernández-Morales JC; Olivares R; Vestring S; Arranz-Tagarro JA; Calvo-Gallardo E; de Pascual R; Gandía L; García AG
    Am J Physiol Cell Physiol; 2013 Jul; 305(2):C160-72. PubMed ID: 23596174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of Exocytosis in Sympathoadrenal Chromaffin Cells from Mouse Models of Neurodegenerative Diseases.
    de Diego AMG; Ortega-Cruz D; García AG
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32178443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular Ca²⁺ per se inhibits quantal size of catecholamine release in adrenal slice chromaffin cells.
    Shang S; Wang C; Liu B; Wu Q; Zhang Q; Liu W; Zheng L; Xu H; Kang X; Zhang X; Wang Y; Zheng H; Wang S; Xiong W; Liu T; Zhou Z
    Cell Calcium; 2014 Sep; 56(3):202-7. PubMed ID: 25103334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells.
    Gavello D; Vandael D; Gosso S; Carbone E; Carabelli V
    J Physiol; 2015 Nov; 593(22):4835-53. PubMed ID: 26282459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the H2S-induced quantal release of catecholamine in adrenal chromaffin cells of neonatal and adult rats.
    Wang K; Zhu D; Yu X; Sun J; Yao W
    Toxicology; 2013 Oct; 312():12-7. PubMed ID: 23851080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine and potassium elicit different patterns of exocytosis in chromaffin cells when the intracellular calcium handling is disturbed.
    Cuchillo-Ibáñez I; Olivares R; Aldea M; Villarroya M; Arroyo G; Fuentealba J; García AG; Albillos A
    Pflugers Arch; 2002 May; 444(1-2):133-42. PubMed ID: 11976925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis.
    Amatore C; Arbault S; Bonifas I; Bouret Y; Erard M; Ewing AG; Sombers LA
    Biophys J; 2005 Jun; 88(6):4411-20. PubMed ID: 15792983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases.
    de Diego AMG; García AG
    Acta Physiol (Oxf); 2018 Oct; 224(2):e13090. PubMed ID: 29742321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the quantal release of catecholamines in chromaffin cells of rat embryos and their mothers.
    Fernández-Morales JC; Cortés-Gil L; García AG; de Diego AM
    Am J Physiol Cell Physiol; 2009 Aug; 297(2):C407-18. PubMed ID: 19439528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greater cytosolic and mitochondrial calcium transients in adrenal medullary slices of hypertensive, compared with normotensive rats.
    Miranda-Ferreira R; de Pascual R; Smaili SS; Caricati-Neto A; Gandía L; García AG; Jurkiewicz A
    Eur J Pharmacol; 2010 Jun; 636(1-3):126-36. PubMed ID: 20361955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A choline-evoked [Ca2+]c signal causes catecholamine release and hyperpolarization of chromaffin cells.
    Fuentealba J; Olivares R; Alés E; Tapia L; Rojo J; Arroyo G; Aldea M; Criado M; Gandía L; García AG
    FASEB J; 2004 Sep; 18(12):1468-70. PubMed ID: 15231719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.