These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27649965)

  • 1. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants.
    Hagerty S; Daniels Y; Singletary M; Pustovyy O; Globa L; MacCrehan WA; Muramoto S; Stan G; Lau JW; Morrison EE; Sorokulova I; Vodyanoy V
    Biometals; 2016 Dec; 29(6):1005-1018. PubMed ID: 27649965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEGylation of zinc nanoparticles amplifies their ability to enhance olfactory responses to odorant.
    Singletary M; Hagerty S; Muramoto S; Daniels Y; MacCrehan WA; Stan G; Lau JW; Pustovyy O; Globa L; Morrison EE; Sorokulova I; Vodyanoy V
    PLoS One; 2017; 12(12):e0189273. PubMed ID: 29261701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles.
    Viswaprakash N; Dennis JC; Globa L; Pustovyy O; Josephson EM; Kanju P; Morrison EE; Vodyanoy VJ
    Chem Senses; 2009 Sep; 34(7):547-57. PubMed ID: 19525316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory responses to explosives associated odorants are enhanced by zinc nanoparticles.
    Moore CH; Pustovyy O; Dennis JC; Moore T; Morrison EE; Vodyanoy VJ
    Talanta; 2012 Jan; 88():730-3. PubMed ID: 22265566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc nanoparticles interact with olfactory receptor neurons.
    Vodyanoy V
    Biometals; 2010 Dec; 23(6):1097-103. PubMed ID: 20559685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Odor-Induced Activity in the Canine Brain by Zinc Nanoparticles: A Functional MRI Study in Fully Unrestrained Conscious Dogs.
    Jia H; Pustovyy OM; Wang Y; Waggoner P; Beyers RJ; Schumacher J; Wildey C; Morrison E; Salibi N; Denney TS; Vodyanoy VJ; Deshpande G
    Chem Senses; 2016 Jan; 41(1):53-67. PubMed ID: 26464498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous zinc nanoparticles in the rat olfactory epithelium are functionally significant.
    Singletary M; Lau JW; Hagerty S; Pustovyy O; Globa L; Vodyanoy V
    Sci Rep; 2020 Oct; 10(1):18435. PubMed ID: 33116197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics observed for woody and fruity odorant mixtures.
    Chaput MA; El Mountassir F; Atanasova B; Thomas-Danguin T; Le Bon AM; Perrut A; Ferry B; Duchamp-Viret P
    Eur J Neurosci; 2012 Feb; 35(4):584-97. PubMed ID: 22304504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gonadotropin releasing hormone (GnRH) modulates odorant responses in the peripheral olfactory system of axolotls.
    Park D; Eisthen HL
    J Neurophysiol; 2003 Aug; 90(2):731-8. PubMed ID: 12672784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of olfaction by femtomolar concentrations of zinc ions.
    Ishimaru T
    Neurosci Lett; 2022 Sep; 788():136837. PubMed ID: 35963478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells.
    Vodyanoy V; Daniels Y; Pustovyy O; MacCrehan WA; Muramoto S; Stan G
    Int J Nanomedicine; 2016; 11():1567-76. PubMed ID: 27143879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression of a mammalian odorant receptor.
    Zhao H; Ivic L; Otaki JM; Hashimoto M; Mikoshiba K; Firestein S
    Science; 1998 Jan; 279(5348):237-42. PubMed ID: 9422698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odorant response kinetics from cultured mouse olfactory epithelium at different ages in vitro.
    Viswaprakash N; Josephson EM; Dennis JC; Yilma S; Morrison EE; Vodyanoy VJ
    Cells Tissues Organs; 2010; 192(6):361-73. PubMed ID: 20664250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events.
    Heydel JM; Coelho A; Thiebaud N; Legendre A; Le Bon AM; Faure P; Neiers F; Artur Y; Golebiowski J; Briand L
    Anat Rec (Hoboken); 2013 Sep; 296(9):1333-45. PubMed ID: 23907783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odorant inhibition of the olfactory cyclic nucleotide-gated channel with a native molecular assembly.
    Chen TY; Takeuchi H; Kurahashi T
    J Gen Physiol; 2006 Sep; 128(3):365-71. PubMed ID: 16940558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information coding in the vertebrate olfactory system.
    Buck LB
    Annu Rev Neurosci; 1996; 19():517-44. PubMed ID: 8833453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially organized response zones in rat olfactory epithelium.
    Scott JW; Shannon DE; Charpentier J; Davis LM; Kaplan C
    J Neurophysiol; 1997 Apr; 77(4):1950-62. PubMed ID: 9114247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules.
    Takeuchi H; Imanaka Y; Hirono J; Kurahashi T
    J Gen Physiol; 2003 Sep; 122(3):255-64. PubMed ID: 12939391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and cellular basis of human olfaction.
    Hatt H
    Chem Biodivers; 2004 Dec; 1(12):1857-69. PubMed ID: 17191824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response enhancement of olfactory sensory neurons-based biosensors for odorant detection.
    Wu CS; Chen PH; Yuan Q; Wang P
    J Zhejiang Univ Sci B; 2009 Apr; 10(4):285-90. PubMed ID: 19353747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.