These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27650332)

  • 1. Dampening Spontaneous Activity Improves the Light Sensitivity and Spatial Acuity of Optogenetic Retinal Prosthetic Responses.
    Barrett JM; Hilgen G; Sernagor E
    Sci Rep; 2016 Sep; 6():33565. PubMed ID: 27650332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice.
    Barrett JM; Degenaar P; Sernagor E
    Front Cell Neurosci; 2015; 9():330. PubMed ID: 26379501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meclofenamic acid improves the signal to noise ratio for visual responses produced by ectopic expression of human rod opsin.
    Eleftheriou CG; Cehajic-Kapetanovic J; Martial FP; Milosavljevic N; Bedford RA; Lucas RJ
    Mol Vis; 2017; 23():334-345. PubMed ID: 28659709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions.
    Ganjawala TH; Lu Q; Fenner MD; Abrams GW; Pan ZH
    Mol Ther; 2019 Jun; 27(6):1195-1205. PubMed ID: 31010741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina.
    Chaffiol A; Caplette R; Jaillard C; Brazhnikova E; Desrosiers M; Dubus E; Duhamel L; Macé E; Marre O; Benoit P; Hantraye P; Bemelmans AP; Bamberg E; Duebel J; Sahel JA; Picaud S; Dalkara D
    Mol Ther; 2017 Nov; 25(11):2546-2560. PubMed ID: 28807567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Strategies for Vision Restoration.
    Lu Q; Pan ZH
    Adv Exp Med Biol; 2021; 1293():545-555. PubMed ID: 33398841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina.
    Petrovskaya LE; Roshchin MV; Smirnova GR; Kolotova DE; Balaban PM; Ostrovsky MA; Malyshev AY
    Dokl Biochem Biophys; 2019 May; 486(1):184-186. PubMed ID: 31367817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Optogenetics and prosthetic treatment of retinal degeneration].
    Kirpichnikov MP; Ostrovskiy MA
    Vestn Oftalmol; 2015; 131(3):99-111. PubMed ID: 26310015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic restoration of high sensitivity vision with bReaChES, a red-shifted channelrhodopsin.
    Too LK; Shen W; Protti DA; Sawatari A; A Black D; Leamey CA; Y Huang J; Lee SR; E Mathai A; Lisowski L; Y Lin J; C Gillies M; Simunovic MP
    Sci Rep; 2022 Nov; 12(1):19312. PubMed ID: 36369267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salvaging ruins: reverting blind retinas into functional visual sensors.
    Mutter M; Swietek N; Münch TA
    Methods Mol Biol; 2014; 1148():149-60. PubMed ID: 24718800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Therapy for Visual Restoration.
    Sakai D; Tomita H; Maeda A
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards optogenetic vision restoration with high resolution.
    Ferrari U; Deny S; Sengupta A; Caplette R; Trapani F; Sahel JA; Dalkara D; Picaud S; Duebel J; Marre O
    PLoS Comput Biol; 2020 Jul; 16(7):e1007857. PubMed ID: 32667921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for expanding the operational range of channelrhodopsin in optogenetic vision.
    Mutter M; Münch TA
    PLoS One; 2013; 8(11):e81278. PubMed ID: 24312285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An allosteric regulator of R7-RGS proteins influences light-evoked activity and glutamatergic waves in the inner retina.
    Cain MD; Vo BQ; Kolesnikov AV; Kefalov VJ; Culican SM; Kerschensteiner D; Blumer KJ
    PLoS One; 2013; 8(12):e82276. PubMed ID: 24349243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal prosthetics, optogenetics, and chemical photoswitches.
    Marc R; Pfeiffer R; Jones B
    ACS Chem Neurosci; 2014 Oct; 5(10):895-901. PubMed ID: 25089879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 17. Contrast Sensitivity With a Subretinal Prosthesis and Implications for Efficient Delivery of Visual Information.
    Goetz G; Smith R; Lei X; Galambos L; Kamins T; Mathieson K; Sher A; Palanker D
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7186-94. PubMed ID: 26540657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetics-Mediated Gene Therapy for Retinal Diseases.
    Tomita H; Sugano E
    Adv Exp Med Biol; 2021; 1293():535-543. PubMed ID: 33398840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo.
    Wu C; Ivanova E; Zhang Y; Pan ZH
    PLoS One; 2013; 8(6):e66332. PubMed ID: 23799092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Optomotor Assay for Assessing the Efficacy of Optogenetic Tools for Vision Restoration.
    Lu Q; Ganjawala TH; Hattar S; Abrams GW; Pan ZH
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1288-1294. PubMed ID: 29625451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.