BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27650474)

  • 1. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation.
    Inoue Y; Guérif M; Baret F; Skidmore A; Gitelson A; Schlerf M; Darvishzadeh R; Olioso A
    Plant Cell Environ; 2016 Dec; 39(12):2609-2623. PubMed ID: 27650474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [MTCARI: A kind of vegetation index monitoring vegetation leaf chlorophyll content based on hyperspectral remote sensing].
    Meng QY; Dong H; Qin QM; Wang JL; Zhao JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Aug; 32(8):2218-22. PubMed ID: 23156785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on the difference in canopy spectral reflectance and chlorophyll content of spring wheat at jointing stage in different land].
    Jin YH; Xiong HG; Zhang F; Wang LF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1043-7. PubMed ID: 23841425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorophyll content retrieval from hyperspectral remote sensing imagery.
    Yang X; Yu Y; Fan W
    Environ Monit Assess; 2015 Jul; 187(7):456. PubMed ID: 26095901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].
    Wu Q; Sun H; Li MZ; Song YY; Zhang YE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):178-83. PubMed ID: 25993844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The study of LAI estimation using a new vegetation index based on CHRIS data].
    Wang LJ; Niu Z; Hou XH; Gao S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1082-6. PubMed ID: 23841433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].
    Wang LW; Wei YX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2823-7. PubMed ID: 24409743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A novel vegetation index (MPRI) of corn canopy by vehicle-borne dynamic prediction].
    Li SQ; Li MZ; Sun H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1605-9. PubMed ID: 25358172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A field-based pushbroom imaging spectrometer for estimating chlorophyll content of maize].
    Zhang DY; Liu RY; Song XY; Xu XG; Huang WJ; Zhu DZ; Wang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):771-5. PubMed ID: 21595237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].
    Tan CW; Zhou QB; Qi L; Zhuang HY
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O
    Zhang X; He Y; Wang C; Xu F; Li X; Tan C; Chen D; Wang G; Shi L
    Front Plant Sci; 2019; 10():1047. PubMed ID: 31507626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative Research on Estimating the Severity of Yellow Rust in Winter Wheat].
    Wang J; Jing YS; Huang WJ; Zhang JC; Zhao J; Zhang Q; Wang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1649-53. PubMed ID: 26601384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.].
    Liu EH; Zhou GS; Zhou L
    Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Estimation of canopy chlorophyll content using hyperspectral data].
    Dong JJ; Wang L; Niu Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3003-6. PubMed ID: 20101973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biangular-Combined Vegetation Indices to Improve the Estimation of Canopy Chlorophyll Content in Wheat Using Multi-Angle Experimental and Simulated Spectral Data.
    Kong W; Huang W; Ma L; Li C; Tang L; Guo J; Zhou X; Casa R
    Front Plant Sci; 2022; 13():866301. PubMed ID: 35498698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing.
    Cao Y; Jiang K; Wu J; Yu F; Du W; Xu T
    PLoS One; 2020; 15(9):e0238530. PubMed ID: 32915830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters].
    Pan B; Zhao GX; Zhu XC; Liu HT; Liang S; Tian DD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2203-6. PubMed ID: 24159876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ hyperspectral data analysis for pigment content estimation of rice leaves.
    Cheng Q; Huang JF; Wang XZ; Wang RC
    J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.