These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27650589)

  • 1. Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils.
    Deckert-Gaudig T; Kurouski D; Hedegaard MA; Singh P; Lednev IK; Deckert V
    Sci Rep; 2016 Sep; 6():33575. PubMed ID: 27650589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering.
    Deckert-Gaudig T; Kämmer E; Deckert V
    J Biophotonics; 2012 Mar; 5(3):215-9. PubMed ID: 22271749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS).
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    Biophys J; 2014 Jan; 106(1):263-71. PubMed ID: 24411258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and composition of insulin fibril surfaces probed by TERS.
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    J Am Chem Soc; 2012 Aug; 134(32):13323-9. PubMed ID: 22813355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin.
    Deckert-Gaudig T; Deckert V
    Sci Rep; 2016 Dec; 6():39622. PubMed ID: 28008970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy.
    vandenAkker CC; Deckert-Gaudig T; Schleeger M; Velikov KP; Deckert V; Bonn M; Koenderink GH
    Small; 2015 Sep; 11(33):4131-9. PubMed ID: 25952953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Mechanisms of Tip Enhancement of Raman Scattering by Protein Aggregates.
    Sereda V; Lednev IK
    Appl Spectrosc; 2017 Jan; 71(1):118-128. PubMed ID: 27407009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the surface chemistry of insulin fibrils on the aggregation rate.
    Hsieh S; Hsieh CW; Chou HH; Chang CW; Chu LY
    Chemphyschem; 2014 Jan; 15(1):76-9. PubMed ID: 24302557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid.
    Lipiec E; Kaderli J; Kobierski J; Riek R; Skirlińska-Nosek K; Sofińska K; Szymoński M; Zenobi R
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4545-4550. PubMed ID: 32964527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy.
    Flynn JD; McGlinchey RP; Walker RL; Lee JC
    J Biol Chem; 2018 Jan; 293(3):767-776. PubMed ID: 29191831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of exposing a critical hydrophobic patch on amyloidogenicity and fibril structure of insulin.
    Li Y; Huang L; Yang X; Wang C; Sun Y; Gong H; Liu Y; Zheng L; Huang K
    Biochem Biophys Res Commun; 2013 Oct; 440(1):56-61. PubMed ID: 24041697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth.
    Zhang P; Moretti M; Allione M; Tian Y; Ordonez-Loza J; Altamura D; Giannini C; Torre B; Das G; Li E; Thoroddsen ST; Sarathy SM; Autiero I; Giugni A; Gentile F; Malara N; Marini M; Di Fabrizio E
    Commun Biol; 2020 Aug; 3(1):457. PubMed ID: 32820203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Structural Organization of Insulin Fibril Polymorphs Revealed by Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR).
    Rizevsky S; Kurouski D
    Chembiochem; 2020 Feb; 21(4):481-485. PubMed ID: 31299124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Imaging of RNA-Tau Amyloid Fibrils at the Nanoscale Using Tip-Enhanced Raman Spectroscopy.
    Cooney GS; Talaga D; Ury-Thiery V; Fichou Y; Huang Y; Lecomte S; Bonhommeau S
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202314369. PubMed ID: 37905600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ
    Bonhommeau S; Talaga D; Hunel J; Cullin C; Lecomte S
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1771-1774. PubMed ID: 28071842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation.
    Jayamani J; Shanmugam G
    Eur J Med Chem; 2014 Oct; 85():352-8. PubMed ID: 25105923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of insulin amyloid fibrils by Raman spectroscopy.
    Ortiz C; Zhang D; Ribbe AE; Xie Y; Ben-Amotz D
    Biophys Chem; 2007 Jul; 128(2-3):150-5. PubMed ID: 17451866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.