These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27650629)

  • 1. Applied catastrophic phase inversion: a continuous non-centrifugal phase separation step in biphasic whole-cell biocatalysis.
    Glonke S; Sadowski G; Brandenbusch C
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1527-1535. PubMed ID: 27650629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous phase separation of stable emulsions from biphasic whole-cell biocatalysis by catastrophic phase inversion.
    Janssen L; Sadowski G; Brandenbusch C
    Biotechnol J; 2023 Jun; 18(6):e2200489. PubMed ID: 36972523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis.
    Brandenbusch C; Glonke S; Collins J; Hoffrogge R; Grunwald K; Bühler B; Schmid A; Sadowski G
    Biotechnol Bioeng; 2015 Nov; 112(11):2316-23. PubMed ID: 26012371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic influence of cells on the formation of stable emulsions in organic-aqueous biotransformations.
    Collins J; Grund M; Brandenbusch C; Sadowski G; Schmid A; Bühler B
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1011-26. PubMed ID: 25916765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of whole-cell reaction and product isolation: Highly hydrophobic solvents promote in situ substrate supply and simplify extractive product isolation.
    Leis D; Lauß B; Macher-Ambrosch R; Pfennig A; Nidetzky B; Kratzer R
    J Biotechnol; 2017 Sep; 257():110-117. PubMed ID: 27913217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational selection of biphasic reaction systems for geranyl glucoside production by Escherichia coli whole-cell biocatalysts.
    Priebe X; Daschner M; Schwab W; Weuster-Botz D
    Enzyme Microb Technol; 2018 May; 112():79-87. PubMed ID: 29499785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient phase separation and product recovery in organic-aqueous bioprocessing using supercritical carbon dioxide.
    Brandenbusch C; Bühler B; Hoffmann P; Sadowski G; Schmid A
    Biotechnol Bioeng; 2010 Nov; 107(4):642-51. PubMed ID: 20589843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis.
    Chen Z; Zhou L; Bing W; Zhang Z; Li Z; Ren J; Qu X
    J Am Chem Soc; 2014 May; 136(20):7498-504. PubMed ID: 24784766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis.
    Bühler B; Bollhalder I; Hauer B; Witholt B; Schmid A
    Biotechnol Bioeng; 2003 Mar; 81(6):683-94. PubMed ID: 12529882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-Polymer-Conjugate-Based Pickering Emulsions for Cell-Free Expression and Cascade Biotransformation.
    Lu H; Ouyang J; Liu WQ; Wu C; Li J
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202312906. PubMed ID: 37966024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor.
    Gao P; Wu S; Praveen P; Loh KC; Li Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1857-1868. PubMed ID: 27830295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pickering Emulsions Biocatalysis: Recent Developments and Emerging Trends.
    Sun Z; Wu C
    Small; 2024 May; ():e2402208. PubMed ID: 38716793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling nanoparticle catalysts without separation based on a pickering emulsion/organic biphasic system.
    Liu H; Zhang Z; Yang H; Cheng F; Du Z
    ChemSusChem; 2014 Jul; 7(7):1888-900. PubMed ID: 24823630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles.
    Nonomura Y; Kobayashi N
    J Colloid Interface Sci; 2009 Feb; 330(2):463-6. PubMed ID: 18992900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Living whole-cell catalysis in compartmentalized emulsion.
    Zhao Q; Ansorge-Schumacher MB; Haag R; Wu C
    Bioresour Technol; 2020 Jan; 295():122221. PubMed ID: 31615701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.
    Schrewe M; Julsing MK; Lange K; Czarnotta E; Schmid A; Bühler B
    Biotechnol Bioeng; 2014 Sep; 111(9):1820-30. PubMed ID: 24852702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of phase inversion on the formation and stability of one-step multiple emulsions.
    Morais JM; Rocha-Filho PA; Burgess DJ
    Langmuir; 2009 Jul; 25(14):7954-61. PubMed ID: 19441778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.
    Duffus LJ; Norton JE; Smith P; Norton IT; Spyropoulos F
    J Colloid Interface Sci; 2016 Jul; 473():9-21. PubMed ID: 27042820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of constitutively solvent-tolerant P. taiwanensis VLB120ΔCΔttgV for stereospecific epoxidation of toxic styrene alleviates carrier solvent use.
    Volmer J; Schmid A; Bühler B
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28345250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization.
    Dunstan TS; Fletcher PD; Mashinchi S
    Langmuir; 2012 Jan; 28(1):339-49. PubMed ID: 22128917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.