These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27650631)

  • 1. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.
    Saad JM; Williams PT
    Waste Manag; 2016 Dec; 58():214-220. PubMed ID: 27650631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of silica-alumina support ratio on H
    Zhang Y; Tao Y; Huang J; Williams P
    Waste Manag Res; 2017 Oct; 35(10):1045-1054. PubMed ID: 28789599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.
    Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT
    Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure.
    Ok HJ; Park MH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):449-53. PubMed ID: 26328379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.
    Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated gasification and catalytic reforming syngas production from corn straw with mitigated greenhouse gas emission potential.
    Hu J; Li D; Lee DJ; Zhang Q; Wang W; Zhao S; Zhang Z; He C
    Bioresour Technol; 2019 May; 280():371-377. PubMed ID: 30780097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress on Catalyst Development for the Steam Reforming of Biomass and Waste Plastics Pyrolysis Volatiles: A Review.
    Santamaria L; Lopez G; Fernandez E; Cortazar M; Arregi A; Olazar M; Bilbao J
    Energy Fuels; 2021 Nov; 35(21):17051-17084. PubMed ID: 34764542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic pyrolysis of liquor-industry waste: Product and mechanism analysis.
    Zhao Y; Li X; Zhu Y; Li Y; Nan J; Li J; Xu G
    Bioresour Technol; 2024 Feb; 394():130293. PubMed ID: 38184088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic.
    Alshareef R; Nahil MA; Williams PT
    Energy Fuels; 2023 Mar; 37(5):3894-3907. PubMed ID: 36897817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Woody biomass and RPF gasification using reforming catalyst and calcium oxide.
    Kobayashi J; Kawamoto K; Fukushima R; Tanaka S
    Chemosphere; 2011 May; 83(9):1273-8. PubMed ID: 21459406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes.
    Ahamed A; Liang L; Chan WP; Tan PCK; Yip NTX; Bobacka J; Veksha A; Yin K; Lisak G
    Environ Pollut; 2021 May; 276():116681. PubMed ID: 33611206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gasification and catalytic reforming of corn straw in closed-loop reactor.
    Hu J; Li D; Lee DJ; Zhang Q
    Bioresour Technol; 2019 Jun; 282():530-533. PubMed ID: 30885664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disposal of plastic mulching film through CO
    Jung JM; Cho SH; Jung S; Lin KA; Chen WH; Tsang YF; Kwon EE
    J Hazard Mater; 2022 May; 430():128454. PubMed ID: 35168100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promising Utilization of CO
    Ray D; Chawdhury P; Subrahmanyam C
    ACS Omega; 2020 Jun; 5(23):14040-14050. PubMed ID: 32566870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.
    Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR
    Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clean energy aspect of plastic waste - hydrogen gas production, CO
    Sudalaimuthu P; Sathyamurthy R
    Environ Sci Pollut Res Int; 2023 May; 30(25):66559-66584. PubMed ID: 37133666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorizing plastic toy wastes to flammable gases through CO
    Jung S; Kim JH; Tsang YF; Song H; Kwon EE
    J Hazard Mater; 2022 Jul; 434():128850. PubMed ID: 35405610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.
    Liao X; Gerdts R; Parker SF; Chi L; Zhao Y; Hill M; Guo J; Jones MO; Jiang Z
    Phys Chem Chem Phys; 2016 Jun; 18(26):17311-9. PubMed ID: 27326792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.