These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 27650963)
1. Differential bioavailability of polychlorinated biphenyls associated with environmental particles: Microplastic in comparison to wood, coal and biochar. Beckingham B; Ghosh U Environ Pollut; 2017 Jan; 220(Pt A):150-158. PubMed ID: 27650963 [TBL] [Abstract][Full Text] [Related]
2. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Jonker MT; Hoenderboom AM; Koelmans AA Environ Toxicol Chem; 2004 Nov; 23(11):2563-70. PubMed ID: 15559269 [TBL] [Abstract][Full Text] [Related]
3. Assimilation efficiency of sediment-bound PCBs ingested by fish impacted by strong sorption. Fadaei H; Williams E; Place AR; Connolly JP; Ghosh U Environ Toxicol Chem; 2017 Dec; 36(12):3480-3488. PubMed ID: 28763114 [TBL] [Abstract][Full Text] [Related]
4. Estimating microplastic-bound intake of hydrophobic organic chemicals by fish using measured desorption rates to artificial gut fluid. Lee H; Lee HJ; Kwon JH Sci Total Environ; 2019 Feb; 651(Pt 1):162-170. PubMed ID: 30227286 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability of hydrophobic organic contaminants in sediment with different particle-size distributions. Mehler WT; Li H; Pang J; Sun B; Lydy MJ; You J Arch Environ Contam Toxicol; 2011 Jul; 61(1):74-82. PubMed ID: 20953950 [TBL] [Abstract][Full Text] [Related]
6. Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: A case study of polypropylene. Zhan Z; Wang J; Peng J; Xie Q; Huang Y; Gao Y Mar Pollut Bull; 2016 Sep; 110(1):559-563. PubMed ID: 27230985 [TBL] [Abstract][Full Text] [Related]
7. Transfer of PCBs from Microplastics under Simulated Gut Fluid Conditions Is Biphasic and Reversible. Mohamed Nor NH; Koelmans AA Environ Sci Technol; 2019 Feb; 53(4):1874-1883. PubMed ID: 30638363 [TBL] [Abstract][Full Text] [Related]
8. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments. Tuikka AI; Leppänen MT; Akkanen J; Sormunen AJ; Leonards PE; van Hattum B; van Vliet LA; Brack W; Smedes F; Kukkonen JV Sci Total Environ; 2016 Sep; 563-564():396-404. PubMed ID: 27139309 [TBL] [Abstract][Full Text] [Related]
9. Availability of polychlorinated biphenyls in field-contaminated sediment. You J; Landrum PF; Trimble TA; Lydy MJ Environ Toxicol Chem; 2007 Sep; 26(9):1940-8. PubMed ID: 17705659 [TBL] [Abstract][Full Text] [Related]
10. Can polyethylene passive samplers predict polychlorinated biphenyls (PCBs) uptake by earthworms and turnips in a biochar amended soil? Silvani L; Hjartardottir S; Bielská L; Škulcová L; Cornelissen G; Nizzetto L; Hale SE Sci Total Environ; 2019 Apr; 662():873-880. PubMed ID: 30708302 [TBL] [Abstract][Full Text] [Related]
11. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Ghosh U; Zimmerman JR; Luthy RG Environ Sci Technol; 2003 May; 37(10):2209-17. PubMed ID: 12785527 [TBL] [Abstract][Full Text] [Related]
12. Influence of black carbon and chemical planarity on bioavailability of sediment-associated contaminants. Pehkonen S; You J; Akkanen J; Kukkonen JV; Lydy MJ Environ Toxicol Chem; 2010 Sep; 29(9):1976-83. PubMed ID: 20821655 [TBL] [Abstract][Full Text] [Related]
13. Enhanced biochars can match activated carbon performance in sediments with high native bioavailability and low final porewater PCB concentrations. Gomez-Eyles JL; Ghosh U Chemosphere; 2018 Jul; 203():179-187. PubMed ID: 29614411 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions. Besseling E; Foekema EM; van den Heuvel-Greve MJ; Koelmans AA Environ Sci Technol; 2017 Aug; 51(15):8795-8804. PubMed ID: 28682597 [TBL] [Abstract][Full Text] [Related]
15. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime. Denyes MJ; Rutter A; Zeeb BA Environ Pollut; 2013 Nov; 182():201-8. PubMed ID: 23933124 [TBL] [Abstract][Full Text] [Related]
16. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Besseling E; Wegner A; Foekema EM; van den Heuvel-Greve MJ; Koelmans AA Environ Sci Technol; 2013 Jan; 47(1):593-600. PubMed ID: 23181424 [TBL] [Abstract][Full Text] [Related]
17. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota. Mäenpää K; Leppänen MT; Figueiredo K; Mayer P; Gilbert D; Jahnke A; Gil-Allué C; Akkanen J; Nybom I; Herve S Environ Toxicol Chem; 2015 Nov; 34(11):2463-74. PubMed ID: 26053463 [TBL] [Abstract][Full Text] [Related]
18. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments. Beckingham B; Ghosh U Environ Sci Technol; 2011 Dec; 45(24):10567-74. PubMed ID: 22077959 [TBL] [Abstract][Full Text] [Related]
19. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Yuan W; Liu X; Wang W; Di M; Wang J Ecotoxicol Environ Saf; 2019 Apr; 170():180-187. PubMed ID: 30529617 [TBL] [Abstract][Full Text] [Related]
20. Effect of reactive core mat application on bioavailability of hydrophobic organic compounds. Meric D; Barbuto SM; Alshawabkeh AN; Shine JP; Sheahan TC Sci Total Environ; 2012 Apr; 423():168-75. PubMed ID: 22386995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]