These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27650983)

  • 1. Investigating the Structural Change in Protein Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy and Continuous Wavelet Transform.
    Fan M; Cai W; Shao X
    Appl Spectrosc; 2017 Mar; 71(3):472-479. PubMed ID: 27650983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the stability of protein in confined environment through analyzing the structure of water by temperature-dependent near-infrared spectroscopy.
    Wang S; Wang M; Han L; Sun Y; Cai W; Shao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120581. PubMed ID: 34776375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids.
    Izutsu K; Fujimaki Y; Kuwabara A; Hiyama Y; Yomota C; Aoyagi N
    J Pharm Sci; 2006 Apr; 95(4):781-9. PubMed ID: 16498574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution.
    Dong A; Kendrick B; Kreilgârd L; Matsuura J; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1997 Nov; 347(2):213-20. PubMed ID: 9367527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent near-infrared spectra of bovine serum albumin in aqueous solutions: spectral analysis by principal component analysis and evolving factor analysis.
    Yuan B; Murayama K; Wu Y; Tsenkova R; Dou X; Era S; Ozaki Y
    Appl Spectrosc; 2003 Oct; 57(10):1223-9. PubMed ID: 14639749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of hydration water around human serum albumin using near-infrared spectroscopy.
    Dong Q; Yu C; Li L; Nie L; Zhang H; Zang H
    Int J Biol Macromol; 2019 Oct; 138():927-932. PubMed ID: 31362025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water as a probe for serum-based diagnosis by temperature- dependent near-infrared spectroscopy.
    Cui X; Yu X; Cai W; Shao X
    Talanta; 2019 Nov; 204():359-366. PubMed ID: 31357305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy.
    Murayama K; Tomida M
    Biochemistry; 2004 Sep; 43(36):11526-32. PubMed ID: 15350138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions.
    Usoltsev D; Sitnikova V; Kajava A; Uspenskaya M
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31409012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous wavelet transform-based feature selection applied to near-infrared spectral diagnosis of cancer.
    Chen H; Lin Z; Mo L; Wu H; Wu T; Tan C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():286-91. PubMed ID: 26143320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the Water Confined in Hydrogel Using Near-Infrared Spectroscopy.
    Ma B; Cai W; Shao X
    Appl Spectrosc; 2022 Jul; 76(7):773-782. PubMed ID: 35255722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Interaction Between Oligopeptide and Water in Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy.
    Cheng D; Cai W; Shao X
    Appl Spectrosc; 2018 Sep; 72(9):1354-1361. PubMed ID: 29664323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared and mid-infrared Fourier transform vibrational circular dichroism of proteins in aqueous solution.
    Ma S; Freedman TB; Dukor RK; Nafie LA
    Appl Spectrosc; 2010 Jun; 64(6):615-26. PubMed ID: 20537229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-induced changes in protein structures studied by Fourier transform infrared spectroscopy and global analysis.
    van Stokkum IH; Linsdell H; Hadden JM; Haris PI; Chapman D; Bloemendal M
    Biochemistry; 1995 Aug; 34(33):10508-18. PubMed ID: 7654705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder.
    Bruun SW; Søndergaard I; Jacobsen S
    J Agric Food Chem; 2007 Sep; 55(18):7234-43. PubMed ID: 17676753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the interactions of water with cryoprotectant and protein by near-infrared spectroscopy.
    Su T; Sun Y; Han L; Cai W; Shao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120417. PubMed ID: 34600324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional near-IR correlation spectroscopy study of molten globule-like state of ovalbumin in acidic pH region: simultaneous changes in hydration and secondary structure.
    Murayama K; Ozaki Y
    Biopolymers; 2002; 67(6):394-405. PubMed ID: 12209447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band analysis of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state by the analytic geometric approach.
    Koashi K; Iwahashi M; Ozaki Y
    Appl Spectrosc; 2003 Dec; 57(12):1539-50. PubMed ID: 14686776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on denoising near infrared spectra of wood based on wavelet transform].
    Wang XS; Qi DW; Huang AM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2059-62. PubMed ID: 19839307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.