BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27651134)

  • 21. Are axial intervertebral disc biomechanics determined by osmosis?
    Vergroesen PA; Emanuel KS; Peeters M; Kingma I; Smit TH
    J Biomech; 2018 Mar; 70():4-9. PubMed ID: 28579261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.
    Hwang D; Gabai AS; Yu M; Yew AG; Hsieh AH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):95-106. PubMed ID: 21380846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies.
    Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH
    J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spine height and disc height changes as the effect of hyperextension using stadiometry and MRI.
    Kourtis D; Magnusson ML; Smith F; Hadjipavlou A; Pope MH
    Iowa Orthop J; 2004; 24():65-71. PubMed ID: 15296209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water and electrolyte content of human intervertebral discs under variable load.
    Kraemer J; Kolditz D; Gowin R
    Spine (Phila Pa 1976); 1985; 10(1):69-71. PubMed ID: 3983704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling changes in intervertebral disc mechanics with degeneration.
    Natarajan RN; Williams JR; Andersson GB
    J Bone Joint Surg Am; 2006 Apr; 88 Suppl 2():36-40. PubMed ID: 16595441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is intervertebral disc pressure linked to herniation?: An in-vitro study using a porcine model.
    Noguchi M; Gooyers CE; Karakolis T; Noguchi K; Callaghan JP
    J Biomech; 2016 Jun; 49(9):1824-1830. PubMed ID: 27157242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Injectable hydrogels with high fixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues.
    Sivan SS; Roberts S; Urban JP; Menage J; Bramhill J; Campbell D; Franklin VJ; Lydon F; Merkher Y; Maroudas A; Tighe BJ
    Acta Biomater; 2014 Mar; 10(3):1124-33. PubMed ID: 24270091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a bioreactor for axially loaded intervertebral disc organ culture.
    Haglund L; Moir J; Beckman L; Mulligan KR; Jim B; Ouellet JA; Roughley P; Steffen T
    Tissue Eng Part C Methods; 2011 Oct; 17(10):1011-9. PubMed ID: 21663457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro.
    Masuoka K; Michalek AJ; MacLean JJ; Stokes IA; Iatridis JC
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1974-9. PubMed ID: 17700443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve.
    Ayotte DC; Ito K; Perren SM; Tepic S
    J Biomech Eng; 2000 Dec; 122(6):587-93. PubMed ID: 11192378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overloading effect on the osmo-viscoelastic and recovery behavior of the intervertebral disc.
    Feki F; Taktak R; Haddar N; Moulart M; Zaïri F; Zaïri F
    Proc Inst Mech Eng H; 2024 Apr; 238(4):430-437. PubMed ID: 38480472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow deformation of intervertebral discs.
    Broberg KB
    J Biomech; 1993; 26(4-5):501-12. PubMed ID: 8478352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scoliosis surgery.
    Violas P; Estivalezes E; Briot J; Sales de Gauzy J; Swider P
    Spine (Phila Pa 1976); 2007 Jul; 32(15):E405-12. PubMed ID: 17621196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of frozen storage on the creep behavior of human intervertebral discs.
    Dhillon N; Bass EC; Lotz JC
    Spine (Phila Pa 1976); 2001 Apr; 26(8):883-8. PubMed ID: 11317110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.
    Gullbrand SE; Peterson J; Mastropolo R; Roberts TT; Lawrence JP; Glennon JC; DiRisio DJ; Ledet EH
    Spine J; 2015 May; 15(5):1028-33. PubMed ID: 25500262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model.
    Masuda K; Imai Y; Okuma M; Muehleman C; Nakagawa K; Akeda K; Thonar E; Andersson G; An HS
    Spine (Phila Pa 1976); 2006 Apr; 31(7):742-54. PubMed ID: 16582847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.