BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27651134)

  • 41. Hydrogels for nucleus replacement--facing the biomechanical challenge.
    Reitmaier S; Wolfram U; Ignatius A; Wilke HJ; Gloria A; Martín-Martínez JM; Silva-Correia J; Miguel Oliveira J; Luís Reis R; Schmidt H
    J Mech Behav Biomed Mater; 2012 Oct; 14():67-77. PubMed ID: 22963748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model.
    Goto K; Tajima N; Chosa E; Totoribe K; Kuroki H; Arizumi Y; Arai T
    J Orthop Sci; 2002; 7(2):243-6. PubMed ID: 11956986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exogenous Crosslinking Restores Intradiscal Pressure of Injured Porcine Intervertebral Discs: An In Vivo Examination Using Quantitative Discomanometry.
    Lin HJ; Lin LC; Hedman TP; Chen WP; Chuang SY
    Spine (Phila Pa 1976); 2015 Oct; 40(20):1572-7. PubMed ID: 26731702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical disc culture system: feasibility study using rat intervertebral discs.
    Ramakrishnan PS; Hong J; Martin JA; Kurriger GL; Buckwalter JA; Lim TH
    Proc Inst Mech Eng H; 2011 Jun; 225(6):611-20. PubMed ID: 22034744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
    MacLean JJ; Owen JP; Iatridis JC
    J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomechanics of the human intervertebral disc: A review of testing techniques and results.
    Newell N; Little JP; Christou A; Adams MA; Adam CJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 May; 69():420-434. PubMed ID: 28262607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intervertebral disc recovery after dynamic or static loading in vitro: is there a role for the endplate?
    van der Veen AJ; van Dieën JH; Nadort A; Stam B; Smit TH
    J Biomech; 2007; 40(10):2230-5. PubMed ID: 17182043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spinal disc hydration status during simulated stooped posture.
    Johannaber K; Fathallah FA
    Work; 2012; 41 Suppl 1():2384-6. PubMed ID: 22317073
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring water content in deforming intervertebral disc tissue by finite element analysis of MRI data.
    Kingma I; van Dieën JH; Nicolay K; Maat JJ; Weinans H
    Magn Reson Med; 2000 Oct; 44(4):650-4. PubMed ID: 11025523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation.
    Wilke HJ; Kienle A; Maile S; Rasche V; Berger-Roscher N
    Eur Spine J; 2016 May; 25(5):1363-1372. PubMed ID: 26838335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings.
    Tang R; Gungor C; Sesek RF; Foreman KB; Gallagher S; Davis GA
    Eur Spine J; 2016 Dec; 25(12):4116-4131. PubMed ID: 26873104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of pressures in the nucleus and within the annulus of the human spinal disc: due to extreme loading.
    Ranu HS
    Proc Inst Mech Eng H; 1990; 204(3):141-6. PubMed ID: 2133780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanical and Endplate Effects on Nutrient Transport in the Intervertebral Disc.
    Giers MB; Munter BT; Eyster KJ; Ide GD; Newcomb AGUS; Lehrman JN; Belykh E; Byvaltsev VA; Kelly BP; Preul MC; Theodore N
    World Neurosurg; 2017 Mar; 99():395-402. PubMed ID: 28012886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Can specific loading through exercise impart healing or regeneration of the intervertebral disc?
    Steele J; Bruce-Low S; Smith D; Osborne N; Thorkeldsen A
    Spine J; 2015 Oct; 15(10):2117-21. PubMed ID: 26409630
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of the matrix degenerative effects of MMP-3, ADAMTS-4, and HTRA1, injected into a bovine intervertebral disc organ culture model.
    Furtwängler T; Chan SC; Bahrenberg G; Richards PJ; Gantenbein-Ritter B
    Spine (Phila Pa 1976); 2013 Oct; 38(22):E1377-87. PubMed ID: 23778376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.