These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 2765122)
1. Effect of lung-density correction in treatment planning for tangential-fields breast irradiation: a case report. Kuchnir FT; Van Huis JM; Pelizzari CA Med Dosim; 1989; 14(2):109-11. PubMed ID: 2765122 [TBL] [Abstract][Full Text] [Related]
2. Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Kestin LL; Sharpe MB; Frazier RC; Vicini FA; Yan D; Matter RC; Martinez AA; Wong JW Int J Radiat Oncol Biol Phys; 2000 Dec; 48(5):1559-68. PubMed ID: 11121662 [TBL] [Abstract][Full Text] [Related]
3. The influence of lung density corrections on treatment planning for primary breast cancer. Fraass BA; Lichter AS; McShan DL; Yanke BR; Diaz RF; Yeakel KS; van de Geijn J Int J Radiat Oncol Biol Phys; 1988 Jan; 14(1):179-90. PubMed ID: 3335452 [TBL] [Abstract][Full Text] [Related]
4. [Dosimetric evaluation of intensity-modulated tangential beam versus conventional tangential irradiation for breast cancer]. Huang XB; Jiang GL; Chen JY; Chen LF; Hu WG Ai Zheng; 2006 Jul; 25(7):855-60. PubMed ID: 16831277 [TBL] [Abstract][Full Text] [Related]
5. Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation. Hashimoyo H; Omura M; Matsui K; Mukai Y; Hongo H; Yamakabe W; Saito K; Yoshida M J Appl Clin Med Phys; 2015 May; 16(3):5369. PubMed ID: 26103495 [TBL] [Abstract][Full Text] [Related]
6. IMRT for the breast: a comparison of tangential planning techniques. Smith W; Menon G; Wolfe N; Ploquin N; Trotter T; Pudney D Phys Med Biol; 2010 Feb; 55(4):1231-41. PubMed ID: 20124651 [TBL] [Abstract][Full Text] [Related]
7. Dosimetric improvements following 3D planning of tangential breast irradiation. Aref A; Thornton D; Youssef E; He T; Tekyi-Mensah S; Denton L; Ezzell G Int J Radiat Oncol Biol Phys; 2000 Dec; 48(5):1569-74. PubMed ID: 11121663 [TBL] [Abstract][Full Text] [Related]
8. Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH). Cheng CW; Das IJ Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1143-50. PubMed ID: 10192366 [TBL] [Abstract][Full Text] [Related]
9. Utility of three-dimensional planning for axillary node coverage with breast-conserving radiation therapy: early experience. Smitt MC; Goffinet DR Radiology; 1999 Jan; 210(1):221-6. PubMed ID: 9885612 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of optimal treatment planning for radiotherapy of synchronous bilateral breast cancer including regional lymph node irradiation. Cho Y; Cho YJ; Chang WS; Kim JW; Choi WH; Lee IJ Radiat Oncol; 2019 Apr; 14(1):56. PubMed ID: 30935400 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments. Chin LM; Cheng CW; Siddon RL; Rice RK; Mijnheer BJ; Harris JR Int J Radiat Oncol Biol Phys; 1989 Dec; 17(6):1327-35. PubMed ID: 2513292 [TBL] [Abstract][Full Text] [Related]
12. An imrt technique to increase therapeutic ratio of breast irradiation in patients with early-stage left breast cancer: limiting second malignancies. Ahmed RS; De Los Santos JF; Fiveash JB; Keene KS; Popple RA Med Dosim; 2008; 33(1):71-7. PubMed ID: 18262126 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive clinical 3-dimensional dosimetric analysis of forward planned IMRT and conventional wedge planned techniques for intact breast radiotherapy. Herrick JS; Neill CJ; Rosser PF Med Dosim; 2008; 33(1):62-70. PubMed ID: 18262125 [TBL] [Abstract][Full Text] [Related]
14. Effects of positioning uncertainty and breathing on dose delivery and radiation pneumonitis prediction in breast cancer. Mavroidis P; Axelsson S; Hyödynmaa S; Rajala J; Pitkänen MA; Lind BK; Brahme A Acta Oncol; 2002; 41(5):471-85. PubMed ID: 12442924 [TBL] [Abstract][Full Text] [Related]
15. Intensity-modulated tangential beam irradiation of the intact breast. Hong L; Hunt M; Chui C; Spirou S; Forster K; Lee H; Yahalom J; Kutcher GJ; McCormick B Int J Radiat Oncol Biol Phys; 1999 Jul; 44(5):1155-64. PubMed ID: 10421550 [TBL] [Abstract][Full Text] [Related]
16. Clinical implementation of intensity-modulated tangential beam irradiation for breast cancer. Li JS; Freedman GM; Price R; Wang L; Anderson P; Chen L; Xiong W; Yang J; Pollack A; Ma CM Med Phys; 2004 May; 31(5):1023-31. PubMed ID: 15191288 [TBL] [Abstract][Full Text] [Related]
17. Should inhomogeneity corrections be applied during treatment planning of tangential breast irradiation? Mijnheer BJ; Heukelom S; Lanson JH; van Battum LJ; van Bree NA; van Tienhoven G Radiother Oncol; 1991 Dec; 22(4):239-44. PubMed ID: 1792314 [TBL] [Abstract][Full Text] [Related]
18. The impact of central lung distance, maximal heart distance, and radiation technique on the volumetric dose of the lung and heart for intact breast radiation. Kong FM; Klein EE; Bradley JD; Mansur DB; Taylor ME; Perez CA; Myerson RJ; Harms WB Int J Radiat Oncol Biol Phys; 2002 Nov; 54(3):963-71. PubMed ID: 12377351 [TBL] [Abstract][Full Text] [Related]
19. The use of compensators to optimise the three dimensional dose distribution in radiotherapy of the intact breast. Carruthers LJ; Redpath AT; Kunkler IH Radiother Oncol; 1999 Mar; 50(3):291-300. PubMed ID: 10392815 [TBL] [Abstract][Full Text] [Related]
20. Intensity modulation for breast treatment using static multi-leaf collimators. Lo YC; Yasuda G; Fitzgerald TJ; Urie MM Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):187-94. PubMed ID: 10656392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]