These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 27651318)
1. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. Marzun G; Levish A; Mackert V; Kallio T; Barcikowski S; Wagener P J Colloid Interface Sci; 2017 Mar; 489():57-67. PubMed ID: 27651318 [TBL] [Abstract][Full Text] [Related]
2. Role of Dissolved and Molecular Oxygen on Cu and PtCu Alloy Particle Structure during Laser Ablation Synthesis in Liquids. Marzun G; Bönnemann H; Lehmann C; Spliethoff B; Weidenthaler C; Barcikowski S Chemphyschem; 2017 May; 18(9):1175-1184. PubMed ID: 28319290 [TBL] [Abstract][Full Text] [Related]
3. Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Neumeister A; Jakobi J; Rehbock C; Moysig J; Barcikowski S Phys Chem Chem Phys; 2014 Nov; 16(43):23671-8. PubMed ID: 25271711 [TBL] [Abstract][Full Text] [Related]
4. A salt-baking 'recipe' of commercial nickel-molybdenum alloy foam for oxygen evolution catalysis in water splitting. Mo S; Zhong H; Liu F; Tang Y; Shah SSA; Bao SJ J Colloid Interface Sci; 2023 Jun; 640():975-982. PubMed ID: 36907157 [TBL] [Abstract][Full Text] [Related]
5. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes. Jakobi J; Menéndez-Manjón A; Chakravadhanula VS; Kienle L; Wagener P; Barcikowski S Nanotechnology; 2011 Apr; 22(14):145601. PubMed ID: 21346297 [TBL] [Abstract][Full Text] [Related]
7. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. Du W; Wang Q; Saxner D; Deskins NA; Su D; Krzanowski JE; Frenkel AI; Teng X J Am Chem Soc; 2011 Sep; 133(38):15172-83. PubMed ID: 21812458 [TBL] [Abstract][Full Text] [Related]
8. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells. Yuan H; He Z Chem Rec; 2017 Jul; 17(7):641-652. PubMed ID: 28375578 [TBL] [Abstract][Full Text] [Related]
9. Nickel nanoparticles in hydrogen transfer reactions. Alonso F; Riente P; Yus M Acc Chem Res; 2011 May; 44(5):379-91. PubMed ID: 21417317 [TBL] [Abstract][Full Text] [Related]
10. Solvent Influence on the Magnetization and Phase of Fe-Ni Alloy Nanoparticles Generated by Laser Ablation in Liquids. Khairani IY; Lin Q; Landers J; Salamon S; Doñate-Buendía C; Karapetrova E; Wende H; Zangari G; Gökce B Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36677981 [TBL] [Abstract][Full Text] [Related]
11. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
12. Noble metal-free hydrogen evolution catalysts for water splitting. Zou X; Zhang Y Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650 [TBL] [Abstract][Full Text] [Related]
13. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Liu HL; Nosheen F; Wang X Chem Soc Rev; 2015 May; 44(10):3056-78. PubMed ID: 25793455 [TBL] [Abstract][Full Text] [Related]
14. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling. Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992 [TBL] [Abstract][Full Text] [Related]
15. A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction. Xu Y; Zhang X; Liu Y; Wang R; Yang Y; Chen J Environ Sci Pollut Res Int; 2023 Jan; 30(5):11302-11320. PubMed ID: 36520289 [TBL] [Abstract][Full Text] [Related]
16. Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites. Yang L; Shan S; Loukrakpam R; Petkov V; Ren Y; Wanjala BN; Engelhard MH; Luo J; Yin J; Chen Y; Zhong CJ J Am Chem Soc; 2012 Sep; 134(36):15048-60. PubMed ID: 22938379 [TBL] [Abstract][Full Text] [Related]
17. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis. Yang Y; Liang F; Li M; Rufford TE; Zhou W; Zhu Z ChemSusChem; 2015 Jul; 8(13):2193-7. PubMed ID: 26097200 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of biological response induced by molybdenum oxide nanocolloids on in vitro cultured NIH/3T3 fibroblast cells by micro-Raman spectroscopy. Fazio E; Speciale A; Spadaro S; Bonsignore M; Cimino F; Cristani M; Trombetta D; Saija A; Neri F Colloids Surf B Biointerfaces; 2018 Oct; 170():233-241. PubMed ID: 29933232 [TBL] [Abstract][Full Text] [Related]
19. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production. Yuan YJ; Lu HW; Yu ZT; Zou ZG ChemSusChem; 2015 Dec; 8(24):4113-27. PubMed ID: 26586523 [TBL] [Abstract][Full Text] [Related]
20. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting. Garcia-Esparza AT; Cha D; Ou Y; Kubota J; Domen K; Takanabe K ChemSusChem; 2013 Jan; 6(1):168-81. PubMed ID: 23255471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]