These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27652070)

  • 1. Local and distant trauma after hypervelocity ballistic impact to the pig hind limb.
    Chen J; Zhang B; Chen W; Kang JY; Chen KJ; Wang AM; Wang JM
    Springerplus; 2016; 5(1):1497. PubMed ID: 27652070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface wave analysis of the skin for penetrating and non-penetrating projectile impact in porcine legs.
    LeSueur J; Hampton C; Koser J; Chirvi S; Pintar FA
    Forensic Sci Med Pathol; 2023 Mar; 19(1):34-43. PubMed ID: 36100841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wounding potential of 4.4-mm (.173) caliber steel ball projectiles.
    Kamphausen T; Janßen K; Banaschak S; Rothschild MA
    Int J Legal Med; 2019 Jan; 133(1):143-150. PubMed ID: 29511853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic assessment of structural evolution for magnesium during hypervelocity nanoprojectile penetration.
    Goswami P; Gupta M; Pal S
    J Mol Model; 2022 Oct; 28(11):370. PubMed ID: 36308609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ballistic impact effects between biological tissue and gelatin.
    Jin Y; Mai R; Wu C; Han R; Li B
    J Mech Behav Biomed Mater; 2018 Feb; 78():292-297. PubMed ID: 29195221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal cavity and pressure distribution in a brain simulant following ballistic penetration.
    Zhang J; Yoganandan N; Pintar FA; Gennarelli TA
    J Neurotrauma; 2005 Nov; 22(11):1335-47. PubMed ID: 16305322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Smooth Particle Hydrodynamics Modeling and Experimental Analysis of the Ballistic Performance of Steel-Based FML Targets.
    Kubit A; Trzepieciński T; Kiciński R; Jurczak K
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projectile penetration into ballistic gelatin.
    Swain MV; Kieser DC; Shah S; Kieser JA
    J Mech Behav Biomed Mater; 2014 Jan; 29():385-92. PubMed ID: 24184862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ballistic impact response of lipid membranes.
    Zhang Y; Meng Z; Qin X; Keten S
    Nanoscale; 2018 Mar; 10(10):4761-4770. PubMed ID: 29465729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penetrating chest trauma caused by a blank cartridge actuated rubber ball projectile: case presentation and ballistic investigation of an uncommon weapon type.
    Frank M; Peters D; Klemm W; Grossjohann R; Ekkernkamp A; Bockholdt B; Seifert J
    Int J Legal Med; 2017 Sep; 131(5):1307-1312. PubMed ID: 28536882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of porcine organs and commonly used ballistic simulants when subjected to impact from steel spheres fired at supersonic velocities.
    Humphrey C; Henneberg M; Wachsberger C; Kumaratilake J
    Forensic Sci Int; 2018 Jul; 288():123-130. PubMed ID: 29747046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ballistic Limit of UHMWPE Composite Armor under Impact of Ogive-Nose Projectile.
    Ding L; Gu X; Shen P; Kong X
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental model for civilian ballistic brain injury biomechanics quantification.
    Zhang J; Yoganandan N; Pintar FA; Guan Y; Gennarelli TA
    J Biomech; 2007; 40(10):2341-6. PubMed ID: 17166502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quantified evaluation of the wounding potential of a ricochet projectile of a handgun cartridge calibre 9 mm (type 82) in a ballistic experiment.
    Moravanský N; Rekeň V; Juříček L; Zummerová A; Kováč P
    Soud Lek; 2013 Jan; 58(1):6-11. PubMed ID: 23432122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental assessment of eye protection efficiency against high speed projectiles.
    Speck A; Zelzer B; Eppig T; Langenbucher A
    Z Med Phys; 2013 Feb; 23(1):71-6. PubMed ID: 22818821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On ballistic parameters of less lethal projectiles influencing the severity of thoracic blunt impacts.
    Pavier J; Langlet A; Eches N; Jacquet JF
    Comput Methods Biomech Biomed Engin; 2015; 18(2):192-200. PubMed ID: 23627256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation.
    Geng S; Verkhoturov SV; Eller MJ; Della-Negra S; Schweikert EA
    J Chem Phys; 2017 Feb; 146(5):054305. PubMed ID: 28178829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of finite element models for backface deformation and body armour design: a systematic review.
    Sarhan AAR; Franklyn M; Lee PVS
    Comput Methods Biomech Biomed Engin; 2025 Jan; 28(1):121-143. PubMed ID: 37962364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcaliber discarding sabot airgun projectiles.
    Frank M; Schönekeß H; Herbst J; Staats HG; Ekkernkamp A; Nguyen TT; Bockholdt B
    Int J Legal Med; 2014 Mar; 128(2):303-8. PubMed ID: 24263305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wound ballistic evaluation of the Taser® XREP ammunition.
    Kunz SN; Adamec J; Zinka B; Münzel D; Noël PB; Eichner S; Manthei A; Grove N; Graw M; Peschel O
    Int J Legal Med; 2013 Jan; 127(1):119-26. PubMed ID: 21984167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.