These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27652449)

  • 21. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy.
    Masiero S; Carraro E; Ferraro C; Gallina P; Rossi A; Rosati G
    J Rehabil Med; 2009 Nov; 41(12):981-5. PubMed ID: 19841828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Innovative technologies applied to sensorimotor rehabilitation after stroke.
    Laffont I; Bakhti K; Coroian F; van Dokkum L; Mottet D; Schweighofer N; Froger J
    Ann Phys Rehabil Med; 2014 Nov; 57(8):543-551. PubMed ID: 25261273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling Ecological Cognitive Rehabilitation Therapies for Building Virtual Environments in Brain Injury.
    Martínez-Moreno JM; Sánchez-González P; Luna M; Roig T; Tormos JM; Gómez EJ
    Methods Inf Med; 2016; 55(1):50-9. PubMed ID: 26391897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upbeat: Augmented Reality-Guided Dancing for Prosthetic Rehabilitation of Upper Limb Amputees.
    Melero M; Hou A; Cheng E; Tayade A; Lee SC; Unberath M; Navab N
    J Healthc Eng; 2019; 2019():2163705. PubMed ID: 31015903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment.
    Dimbwadyo-Terrer I; Trincado-Alonso F; de Los Reyes-Guzmán A; Aznar MA; Alcubilla C; Pérez-Nombela S; Del Ama-Espinosa A; Polonio-López B; Gil-Agudo Á
    Disabil Rehabil Assist Technol; 2016 Aug; 11(6):462-7. PubMed ID: 26181226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotics for Lower Limb Rehabilitation.
    Esquenazi A; Talaty M
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):385-397. PubMed ID: 30954154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence.
    Kim WS; Cho S; Ku J; Kim Y; Lee K; Hwang HJ; Paik NJ
    J Clin Med; 2020 Oct; 9(10):. PubMed ID: 33096678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor learning perspectives on haptic training for the upper extremities.
    Williams CK; Carnahan H
    IEEE Trans Haptics; 2014; 7(2):240-50. PubMed ID: 24968385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis.
    Levin MF; Knaut LA; Magdalon EC; Subramanian S
    Stud Health Technol Inform; 2009; 145():94-108. PubMed ID: 19592789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Game Changer: 'The Use of Digital Technologies in the Management of Upper Limb Rehabilitation'.
    Ballantyne R; Rea PM
    Adv Exp Med Biol; 2019; 1205():117-147. PubMed ID: 31894574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke.
    Cameirão MS; Badia SB; Duarte E; Frisoli A; Verschure PF
    Stroke; 2012 Oct; 43(10):2720-8. PubMed ID: 22871683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. VITA-an everyday virtual reality setup for prosthetics and upper-limb rehabilitation.
    Nissler C; Nowak M; Connan M; Büttner S; Vogel J; Kossyk I; Márton ZC; Castellini C
    J Neural Eng; 2019 Apr; 16(2):026039. PubMed ID: 30864550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rehabilitation of activities of daily living in virtual environments with intuitive user interface and force feedback.
    Chiang VC; Lo KH; Choi KS
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):672-680. PubMed ID: 27782750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation.
    Wheaton LA
    J Neuroeng Rehabil; 2017 May; 14(1):41. PubMed ID: 28532464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rehabilitation of Upper Limb in Children with Acquired Brain Injury: A Preliminary Comparative Study.
    Beretta E; Cesareo A; Biffi E; Schafer C; Galbiati S; Strazzer S
    J Healthc Eng; 2018; 2018():4208492. PubMed ID: 29732047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beyond therapists: Technology-aided physical MS rehabilitation delivery.
    Feys P; Straudi S
    Mult Scler; 2019 Sep; 25(10):1387-1393. PubMed ID: 31469352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.