These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 27652455)

  • 21. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children.
    Kinney-Lang E; Auyeung B; Escudero J
    J Neural Eng; 2016 Dec; 13(6):061002. PubMed ID: 27762234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Future Developments in Retinal Prostheses].
    Walter P
    Klin Monbl Augenheilkd; 2016 Nov; 233(11):1238-1243. PubMed ID: 27643604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions.
    Pizzolato C; Gunduz MA; Palipana D; Wu J; Grant G; Hall S; Dennison R; Zafonte RD; Lloyd DG; Teng YD
    Exp Neurol; 2021 May; 339():113612. PubMed ID: 33453213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regenerative Electrode Interfaces for Neural Prostheses.
    Thompson CH; Zoratti MJ; Langhals NB; Purcell EK
    Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
    Nason SR; Mender MJ; Vaskov AK; Willsey MS; Ganesh Kumar N; Kung TA; Patil PG; Chestek CA
    Neuron; 2021 Oct; 109(19):3164-3177.e8. PubMed ID: 34499856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motor-commands decoding using peripheral nerve signals: a review.
    Hong KS; Aziz N; Ghafoor U
    J Neural Eng; 2018 Jun; 15(3):031004. PubMed ID: 29498358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Robust Encoding Scheme for Delivering Artificial Sensory Information via Direct Brain Stimulation.
    Bjanes DA; Moritz CT
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):1994-2004. PubMed ID: 31443035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recapitulating flesh with silicon and steel: advancements in upper extremity robotic prosthetics.
    Lee B; Attenello FJ; Liu CY; McLoughlin MP; Apuzzo ML
    World Neurosurg; 2014; 81(5-6):730-41. PubMed ID: 24631910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.
    Klaes C; Shi Y; Kellis S; Minxha J; Revechkis B; Andersen RA
    J Neural Eng; 2014 Oct; 11(5):056024. PubMed ID: 25242377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration.
    Lee B; Liu CY; Apuzzo ML
    World Neurosurg; 2013; 79(3-4):457-71. PubMed ID: 23333985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review.
    Yildiz KA; Shin AY; Kaufman KR
    J Neuroeng Rehabil; 2020 Mar; 17(1):43. PubMed ID: 32151268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Neural interface systems: the future is (almost) here].
    Masse NY; Jarosiewicz B
    Med Sci (Paris); 2012 Nov; 28(11):932-4. PubMed ID: 23171895
    [No Abstract]   [Full Text] [Related]  

  • 33. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuroprosthetic Speech: The Ethical Significance of Accuracy, Control and Pragmatics.
    Rainey S; Maslen H; Mégevand P; Arnal LH; Fourneret E; Yvert B
    Camb Q Healthc Ethics; 2019 Oct; 28(4):657-670. PubMed ID: 31475659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural prosthesis for recovery of impaired cognitive function: bridging the gap between concept and reality.
    Ohiorhenuan I; Zada G
    World Neurosurg; 2013; 79(3-4):409-10. PubMed ID: 23369805
    [No Abstract]   [Full Text] [Related]  

  • 36. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural machine interfaces for controlling multifunctional powered upper-limb prostheses.
    Ohnishi K; Weir RF; Kuiken TA
    Expert Rev Med Devices; 2007 Jan; 4(1):43-53. PubMed ID: 17187470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brain-machine interface.
    Nair P
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18343. PubMed ID: 24222678
    [No Abstract]   [Full Text] [Related]  

  • 39. Neuroprosthetic technology for individuals with spinal cord injury.
    Collinger JL; Foldes S; Bruns TM; Wodlinger B; Gaunt R; Weber DJ
    J Spinal Cord Med; 2013 Jul; 36(4):258-72. PubMed ID: 23820142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.
    Corbett EA; Körding KP; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):674-83. PubMed ID: 23529107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.