BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27652602)

  • 1. Remarkable Enhancement of Chemiluminescent Signal by Dioxetane-Fluorophore Conjugates: Turn-ON Chemiluminescence Probes with Color Modulation for Sensing and Imaging.
    Hananya N; Eldar Boock A; Bauer CR; Satchi-Fainaro R; Shabat D
    J Am Chem Soc; 2016 Oct; 138(40):13438-13446. PubMed ID: 27652602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes.
    Green O; Eilon T; Hananya N; Gutkin S; Bauer CR; Shabat D
    ACS Cent Sci; 2017 Apr; 3(4):349-358. PubMed ID: 28470053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Dioxetane Luminophores with Direct Chemiluminescence Emission Mode.
    Green O; Gnaim S; Blau R; Eldar-Boock A; Satchi-Fainaro R; Shabat D
    J Am Chem Soc; 2017 Sep; 139(37):13243-13248. PubMed ID: 28853880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging.
    Gnaim S; Scomparin A; Eldar-Boock A; Bauer CR; Satchi-Fainaro R; Shabat D
    Chem Sci; 2019 Mar; 10(10):2945-2955. PubMed ID: 30996873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivatable Red Chemiluminescent AIEgen Probe for
    Li J; Hu Y; Li Z; Liu W; Deng T; Li J
    Anal Chem; 2021 Aug; 93(30):10601-10610. PubMed ID: 34296856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging.
    Eilon-Shaffer T; Roth-Konforti M; Eldar-Boock A; Satchi-Fainaro R; Shabat D
    Org Biomol Chem; 2018 Mar; 16(10):1708-1712. PubMed ID: 29451576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores.
    Gnaim S; Green O; Shabat D
    Chem Commun (Camb); 2018 Feb; 54(17):2073-2085. PubMed ID: 29423487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of a small molecular NIR-II chemiluminescence probe for in vivo
    Chen Z; Su L; Wu Y; Liu J; Wu R; Li Q; Wang C; Liu L; Song J
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2205186120. PubMed ID: 36787363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent Chemiluminescent Glow of Phenoxy-dioxetane Luminophore Enables Unique CRET-Based Detection of Proteases.
    Hananya N; Press O; Das A; Scomparin A; Satchi-Fainaro R; Sagi I; Shabat D
    Chemistry; 2019 Nov; 25(64):14679-14687. PubMed ID: 31495978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An activatable chemiluminescence probe based on phenoxy-dioxetane scaffold for biothiol imaging in living systems.
    Fu A; Mao Y; Wang H; Cao Z
    J Pharm Biomed Anal; 2021 Sep; 204():114266. PubMed ID: 34284266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Chemiexcitation by a Unique Dioxetane Scaffold Gated by an OR Logic Set of Triggers.
    David M; Jaber Q; Fridman M; Shabat D
    Chemistry; 2023 May; 29(25):e202300422. PubMed ID: 36779696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemiluminescent duplex analysis using phenoxy-1,2-dioxetane luminophores with color modulation.
    Gutkin S; Tannous R; Jaber Q; Fridman M; Shabat D
    Chem Sci; 2023 Jun; 14(25):6953-6962. PubMed ID: 37389255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple rapid-responsive probes for hypochlorite detection based on dioxetane luminophore derivatives.
    Sun Y; Gao Y; Tang C; Dong G; Zhao P; Peng D; Wang T; Du L; Li M
    J Pharm Anal; 2022 Jun; 12(3):446-452. PubMed ID: 35811615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular Access to Diverse Chemiluminescent Dioxetane-Luminophores through Convergent Synthesis.
    Gnaim S; Gholap SP; Ge L; Das S; Gutkin S; Green O; Shelef O; Hananya N; Baran PS; Shabat D
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202202187. PubMed ID: 35258138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemiluminescent Probes Based on 1,2-Dioxetane Structures For Bioimaging.
    Wang Y; Bian Y; Chen X; Su D
    Chem Asian J; 2022 Mar; 17(6):e202200018. PubMed ID: 35088544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances and Challenges in Luminescent Imaging: Bright Outlook for Chemiluminescence of Dioxetanes in Water.
    Hananya N; Shabat D
    ACS Cent Sci; 2019 Jun; 5(6):949-959. PubMed ID: 31263754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Transfer Chemiluminescent Spiroadamantane 1,2-Dioxetane Probes for Bioanalyte Detection and Imaging.
    Kagalwala HN; Lippert AR
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202210057. PubMed ID: 35926176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Chemiluminescent Probes with a Very Long Near-Infrared Emission Wavelength for in Vivo Imaging.
    Huang J; Jiang Y; Li J; Huang J; Pu K
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3999-4003. PubMed ID: 33119955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Activatable Chemiluminescent Probe for Sensitive Detection of γ-Glutamyl Transpeptidase Activity in Vivo.
    An R; Wei S; Huang Z; Liu F; Ye D
    Anal Chem; 2019 Nov; 91(21):13639-13646. PubMed ID: 31560193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemiluminescent 1,2-Dioxetane Iridium Complexes for Near-Infrared Oxygen Sensing.
    Kagalwala HN; Gerberich J; Smith CJ; Mason RP; Lippert AR
    Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202115704. PubMed ID: 35037345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.