These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27652608)

  • 1. Effects of Elevated Temperature and Food Supply on the Termination of Over-Summering and Subsequent Development of the Calanoid Copepod Calanus sinicus: Morphology, Physiology and Gene Expression.
    Zhou K; Wang M; Sun S
    PLoS One; 2016; 11(9):e0161838. PubMed ID: 27652608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus.
    Lauritano C; Carotenuto Y; Vitiello V; Buttino I; Romano G; Hwang JS; Ianora A
    Mar Genomics; 2015 Dec; 24 Pt 1():89-94. PubMed ID: 25666254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why did the copepod Calanus sinicus increase during the 1990s in the Yellow Sea?
    Kang JH; Kim WS; Jeong HJ; Shin K; Chang M
    Mar Environ Res; 2007 Feb; 63(1):82-90. PubMed ID: 16839601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and spatial variation in abundance of the copepod Calanus sinicus: Effects of decreasing dissolved oxygen and small jellyfish bloom in northern Yellow Sea, China, nearshore waters.
    Sun X; Sun X; Zhu L; Li X; Sun S
    Mar Pollut Bull; 2020 Dec; 161(Pt B):111653. PubMed ID: 33190000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus.
    Tarrant AM; Baumgartner MF; Hansen BH; Altin D; Nordtug T; Olsen AJ
    Front Zool; 2014; 11(1):91. PubMed ID: 25568661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Crude Awakening: Effects of Crude Oil on Lipid Metabolism in Calanoid Copepods Terminating Diapause.
    Skottene E; Tarrant AM; Olsen AJ; Altin D; Hansen BH; Choquet M; Olsen RE; Jenssen BM
    Biol Bull; 2019 Oct; 237(2):90-110. PubMed ID: 31714858
    [No Abstract]   [Full Text] [Related]  

  • 7. The Swimming Behavior of the Calanoid Copepod
    Chen MR; Hwang JS
    Zool Stud; 2018; 57():e13. PubMed ID: 31966253
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effects of residual heat and chlorine in cooling water from coastal power plant on Calanus sinicus].
    Jiang ZB; Zeng JN; Chen QZ; Liao YB; Xu XQ; Shou L; Liu JJ; Gao AG
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1401-6. PubMed ID: 18808039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome changes in response to ecologically viable environmental variation in Calanus sinicus.
    Wiacek M; Uddin N; Kim HJ; Zubrzycki IZ
    Protein Pept Lett; 2013 Jan; 20(1):78-87. PubMed ID: 22789102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea.
    Lin JN; Yan T; Zhang QC; Wang YF; Liu Q; Zhou MJ
    Mar Pollut Bull; 2014 Nov; 88(1-2):302-10. PubMed ID: 25242234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body size regulation in copepod crustaceans.
    Twombly S; Tisch N
    Oecologia; 2000 Feb; 122(3):318-326. PubMed ID: 28308282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Selective feeding of Calanus sinicus on harmful algal blooms species in East China Sea in spring].
    Sun J; Wang XD; Song SQ
    Ying Yong Sheng Tai Xue Bao; 2007 Jan; 18(1):151-7. PubMed ID: 17396516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus.
    Weydmann A; Walczowski W; Carstensen J; Kwaśniewski S
    Glob Chang Biol; 2018 Jan; 24(1):172-183. PubMed ID: 28801968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transcriptome resource for the copepod Calanus glacialis across a range of culture temperatures.
    Ramos AA; Weydmann A; Cox CJ; Canário AV; Serrão EA; Pearson GA
    Mar Genomics; 2015 Oct; 23():27-9. PubMed ID: 25863290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of digestive enzymes of calanoid copepod species from different latitudes in relation to temperature, pH and food.
    Freese D; Kreibich T; Niehoff B
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Aug; 162(4):66-72. PubMed ID: 22561197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana.
    Cheng W; Li D; Wang Y; Liu Y; Zhu-Salzman K
    J Insect Physiol; 2016 Dec; 95():66-77. PubMed ID: 27639943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of embryonic quiescence determines viability of embryos from the calanoid copepod, Acartia tonsa (Dana).
    Nilsson B; Hansen BW
    PLoS One; 2018; 13(3):e0193727. PubMed ID: 29513715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term effects of elevated CO₂ and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus.
    Hildebrandt N; Niehoff B; Sartoris FJ
    Mar Pollut Bull; 2014 Mar; 80(1-2):59-70. PubMed ID: 24529340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus.
    Aruda AM; Baumgartner MF; Reitzel AM; Tarrant AM
    J Insect Physiol; 2011 May; 57(5):665-75. PubMed ID: 21419129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of ecdysteroids and cytochrome P450 enzymes during lipid turnover and reproduction in Calanus finmarchicus (Crustacea: Copepoda).
    Hansen BH; Altin D; Hessen KM; Dahl U; Breitholtz M; Nordtug T; Olsen AJ
    Gen Comp Endocrinol; 2008 Aug; 158(1):115-21. PubMed ID: 18586244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.