These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27653375)

  • 1. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
    Nolte D; Tsang CK; Zhang KY; Ding Z; Kedgley AE; Bull AMJ
    J Biomech; 2016 Oct; 49(14):3576-3581. PubMed ID: 27653375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of the lower limb bones from digitised anatomical landmarks using statistical shape modelling.
    Nolte D; Ko ST; Bull AMJ; Kedgley AE
    Gait Posture; 2020 Mar; 77():269-275. PubMed ID: 32092603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An articulated shape model to predict paediatric lower limb bone geometry using sparse landmarks.
    Carman L; Besier TF; Rooks NB; Choisne J
    J Biomech; 2024 Jul; 172():112211. PubMed ID: 38955093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of predictive statistical shape models for paediatric lower limb bones.
    Shi B; Barzan M; Nasseri A; Carty CP; Lloyd DG; Davico G; Maharaj JN; Diamond LE; Saxby DJ
    Comput Methods Programs Biomed; 2022 Oct; 225():107002. PubMed ID: 35882107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TLEM 2.0 - a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity.
    Carbone V; Fluit R; Pellikaan P; van der Krogt MM; Janssen D; Damsgaard M; Vigneron L; Feilkas T; Koopman HF; Verdonschot N
    J Biomech; 2015 Mar; 48(5):734-41. PubMed ID: 25627871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femur, tibia and fibula bone templates to estimate subject-specific knee ligament attachment site locations.
    Pillet H; Bergamini E; Rochcongar G; Camomilla V; Thoreux P; Rouch P; Cappozzo A; Skalli W
    J Biomech; 2016 Oct; 49(14):3523-3528. PubMed ID: 27717547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal medical imaging can accurately reconstruct geometric bone models for musculoskeletal models.
    Suwarganda EK; Diamond LE; Lloyd DG; Besier TF; Zhang J; Killen BA; Savage TN; Saxby DJ
    PLoS One; 2019; 14(2):e0205628. PubMed ID: 30742643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological variation in paediatric lower limb bones.
    Carman L; Besier TF; Choisne J
    Sci Rep; 2022 Feb; 12(1):3251. PubMed ID: 35228607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique.
    Modenese L; Ceseracciu E; Reggiani M; Lloyd DG
    J Biomech; 2016 Jan; 49(2):141-8. PubMed ID: 26776930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Best methods and data to reconstruct paediatric lower limb bones for musculoskeletal modelling.
    Davico G; Pizzolato C; Killen BA; Barzan M; Suwarganda EK; Lloyd DG; Carty CP
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1225-1238. PubMed ID: 31691037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower limb estimation from sparse landmarks using an articulated shape model.
    Zhang J; Fernandez J; Hislop-Jambrich J; Besier TF
    J Biomech; 2016 Dec; 49(16):3875-3881. PubMed ID: 28573974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the interactions between lower-limb bone morphology, limb inertial properties and limb dynamics.
    Dellanini L; Hawkins D; Martin RB; Stover S
    J Biomech; 2003 Jul; 36(7):913-9. PubMed ID: 12757799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical shape modelling versus linear scaling: Effects on predictions of hip joint centre location and muscle moment arms in people with hip osteoarthritis.
    Bahl JS; Zhang J; Killen BA; Taylor M; Solomon LB; Arnold JB; Lloyd DG; Besier TF; Thewlis D
    J Biomech; 2019 Mar; 85():164-172. PubMed ID: 30770197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of femur reconstruction from sparse geometric data using a statistical shape model.
    Zhang J; Besier TF
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):566-576. PubMed ID: 27998170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity.
    Pellikaan P; van der Krogt MM; Carbone V; Fluit R; Vigneron LM; Van Deun J; Verdonschot N; Koopman HF
    J Biomech; 2014 Mar; 47(5):1144-50. PubMed ID: 24418197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mass-length scaling law for modeling muscle strength in the lower limb.
    Correa TA; Pandy MG
    J Biomech; 2011 Nov; 44(16):2782-9. PubMed ID: 21937046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of scaling errors of the thigh and shank segments on musculoskeletal simulation results.
    Koller W; Baca A; Kainz H
    Gait Posture; 2021 Jun; 87():65-74. PubMed ID: 33894464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement.
    Martelli S; Kersh ME; Pandy MG
    J Biomech; 2015 Oct; 48(13):3606-15. PubMed ID: 26315919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A statistical shape model of the tibia-fibula complex: sexual dimorphism and effects of age on reconstruction accuracy from anatomical landmarks.
    Bruce OL; Baggaley M; Welte L; Rainbow MJ; Edwards WB
    Comput Methods Biomech Biomed Engin; 2022 Jun; 25(8):875-886. PubMed ID: 34730046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of changing bone and muscle size on limb inertial properties and limb dynamics: a computer simulation.
    Dellanini L; Hawkins D; Martin B; Stover S
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):167-76. PubMed ID: 15512760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.