These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27653442)

  • 1. Structure and Substrate Recognition of the Bottromycin Maturation Enzyme BotP.
    Mann G; Huo L; Adam S; Nardone B; Vendome J; Westwood NJ; Müller R; Koehnke J
    Chembiochem; 2016 Dec; 17(23):2286-2292. PubMed ID: 27653442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Stereoselective P450 Enzyme BotCYP Enables the
    Adam S; Franz L; Milhim M; Bernhardt R; Kalinina OV; Koehnke J
    J Am Chem Soc; 2020 Dec; 142(49):20560-20565. PubMed ID: 33249843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting Bottromycin Biosynthesis Using Comparative Untargeted Metabolomics.
    Crone WJ; Vior NM; Santos-Aberturas J; Schmitz LG; Leeper FJ; Truman AW
    Angew Chem Int Ed Engl; 2016 Aug; 55(33):9639-43. PubMed ID: 27374993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroamidine Formation in Bottromycins Is Catalyzed by a Divergent YcaO Enzyme.
    Franz L; Adam S; Santos-Aberturas J; Truman AW; Koehnke J
    J Am Chem Soc; 2017 Dec; 139(50):18158-18161. PubMed ID: 29206037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bottromycin epimerase BotH defines a group of atypical α/β-hydrolase-fold enzymes.
    Sikandar A; Franz L; Adam S; Santos-Aberturas J; Horbal L; Luzhetskyy A; Truman AW; Kalinina OV; Koehnke J
    Nat Chem Biol; 2020 Sep; 16(9):1013-1018. PubMed ID: 32601484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.
    Davis KM; Schramma KR; Hansen WA; Bacik JP; Khare SD; Seyedsayamdost MR; Ando N
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10420-10425. PubMed ID: 28893989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis of Leader Peptide Recognition in Lasso Peptide Biosynthesis Pathway.
    Sumida T; Dubiley S; Wilcox B; Severinov K; Tagami S
    ACS Chem Biol; 2019 Jul; 14(7):1619-1627. PubMed ID: 31188556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottromycins - biosynthesis, synthesis and activity.
    Franz L; Kazmaier U; Truman AW; Koehnke J
    Nat Prod Rep; 2021 Sep; 38(9):1659-1683. PubMed ID: 33621290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Biosynthetic Studies of Bottromycin Expand the Enzymatic Capabilities of the YcaO Superfamily.
    Schwalen CJ; Hudson GA; Kosol S; Mahanta N; Challis GL; Mitchell DA
    J Am Chem Soc; 2017 Dec; 139(50):18154-18157. PubMed ID: 29200283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis.
    Gu W; Sardar D; Pierce E; Schmidt EW
    J Am Chem Soc; 2018 Nov; 140(47):16213-16221. PubMed ID: 30387998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation.
    Völler GH; Krawczyk B; Ensle P; Süssmuth RD
    J Am Chem Soc; 2013 May; 135(20):7426-9. PubMed ID: 23651048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiazoline-Specific Amidohydrolase PurAH Is the Gatekeeper of Bottromycin Biosynthesis.
    Sikandar A; Franz L; Melse O; Antes I; Koehnke J
    J Am Chem Soc; 2019 Jun; 141(25):9748-9752. PubMed ID: 31192589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization and structural prediction of a novel cytosolic leucyl aminopeptidase of the M17 family from Schizosaccharomyces pombe.
    Herrera-Camacho I; Rosas-Murrieta NH; Rojo-Domínguez A; Millán L; Reyes-Leyva J; Santos-López G; Suárez-Rendueles P
    FEBS J; 2007 Dec; 274(23):6228-40. PubMed ID: 18028193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lasso peptides: an intriguing class of bacterial natural products.
    Hegemann JD; Zimmermann M; Xie X; Marahiel MA
    Acc Chem Res; 2015 Jul; 48(7):1909-19. PubMed ID: 26079760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the leucine aminopeptidase from Pseudomonas putida reveals the molecular basis for its enantioselectivity and broad substrate specificity.
    Kale A; Pijning T; Sonke T; Dijkstra BW; Thunnissen AM
    J Mol Biol; 2010 May; 398(5):703-14. PubMed ID: 20359484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and biochemical studies of an iterative ribosomal peptide macrocyclase.
    Li G; Patel K; Zhang Y; Pugmire JK; Ding Y; Bruner SD
    Proteins; 2022 Mar; 90(3):670-679. PubMed ID: 34664307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Biosynthesis of Crocagins: Polycyclic Posttranslationally Modified Ribosomal Peptides from Chondromyces crocatus.
    Viehrig K; Surup F; Volz C; Herrmann J; Abou Fayad A; Adam S; Köhnke J; Trauner D; Müller R
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7407-7410. PubMed ID: 28544148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.