These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27653489)

  • 61. Actions of emigrated neutrophils on Na(+) and K(+) currents in rat ventricular myocytes.
    Ward CA; Bazzazi H; Clark RB; Nygren A; Giles WR
    Prog Biophys Mol Biol; 2006; 90(1-3):249-69. PubMed ID: 16165196
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.
    Hegyi B; Bányász T; Shannon TR; Chen-Izu Y; Izu LT
    Biophys J; 2016 Sep; 111(6):1304-1315. PubMed ID: 27653489
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intracellular levels of Na(+) and TTX-sensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes.
    Bilginoglu A; Kandilci HB; Turan B
    Cardiovasc Toxicol; 2013 Jun; 13(2):138-47. PubMed ID: 23225150
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intracellular sodium determines frequency-dependent alterations in contractility in hypertrophied feline ventricular myocytes.
    Mills GD; Harris DM; Chen X; Houser SR
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H1129-38. PubMed ID: 17012360
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Changes in extracellular K+ concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+ current IK1.
    Bouchard R; Clark RB; Juhasz AE; Giles WR
    J Physiol; 2004 May; 556(Pt 3):773-90. PubMed ID: 14990678
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cardiac submembrane [Na+] transients sensed by Na+-Ca2+ exchange current.
    Weber CR; Ginsburg KS; Bers DM
    Circ Res; 2003 May; 92(9):950-2. PubMed ID: 12702644
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations.
    Horvath B; Banyasz T; Jian Z; Hegyi B; Kistamas K; Nanasi PP; Izu LT; Chen-Izu Y
    J Mol Cell Cardiol; 2013 Nov; 64():59-68. PubMed ID: 24012538
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Na⁺ transport in the normal and failing heart - remember the balance.
    Despa S; Bers DM
    J Mol Cell Cardiol; 2013 Aug; 61():2-10. PubMed ID: 23608603
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Profile of L-type Ca(2+) current and Na(+)/Ca(2+) exchange current during cardiac action potential in ventricular myocytes.
    Banyasz T; Horvath B; Jian Z; Izu LT; Chen-Izu Y
    Heart Rhythm; 2012 Jan; 9(1):134-42. PubMed ID: 21884673
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.
    Shannon TR; Wang F; Puglisi J; Weber C; Bers DM
    Biophys J; 2004 Nov; 87(5):3351-71. PubMed ID: 15347581
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Na/K pump-induced [Na](i) gradients in rat ventricular myocytes measured with two-photon microscopy.
    Despa S; Kockskämper J; Blatter LA; Bers DM
    Biophys J; 2004 Aug; 87(2):1360-8. PubMed ID: 15298938
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged.
    Despa S; Islam MA; Weber CR; Pogwizd SM; Bers DM
    Circulation; 2002 May; 105(21):2543-8. PubMed ID: 12034663
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes.
    Despa S; Islam MA; Pogwizd SM; Bers DM
    J Physiol; 2002 Feb; 539(Pt 1):133-43. PubMed ID: 11850507
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Changes in subsarcolemmal sodium concentration measured by Na-Ca exchanger activity during Na-pump inhibition and beta-adrenergic stimulation in guinea-pig ventricular myocytes.
    Main MJ; Grantham CJ; Cannell MB
    Pflugers Arch; 1997 Dec; 435(1):112-8. PubMed ID: 9359910
    [TBL] [Abstract][Full Text] [Related]  

  • 75. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements.
    Barry PH
    J Neurosci Methods; 1994 Jan; 51(1):107-16. PubMed ID: 8189746
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microheterogeneity of subsarcolemmal sodium gradients. Electron probe microanalysis in guinea-pig ventricular myocytes.
    Wendt-Gallitelli MF; Voigt T; Isenberg G
    J Physiol; 1993 Dec; 472():33-44. PubMed ID: 8145148
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Beta-adrenergic stimulation does not regulate Na pump function in voltage-clamped ventricular myocytes of the rat heart.
    Ishizuka N; Berlin JR
    Pflugers Arch; 1993 Aug; 424(3-4):361-3. PubMed ID: 8105445
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle.
    Cohen CJ; Fozzard HA; Sheu SS
    Circ Res; 1982 May; 50(5):651-62. PubMed ID: 7074728
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration.
    Oliva C; Cohen IS; Mathias RT
    Biophys J; 1988 Nov; 54(5):791-9. PubMed ID: 3242629
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ionic diffusion in voltage-clamped isolated cardiac myocytes. Implications for Na,K-pump studies.
    Mogul DJ; Singer DH; Ten Eick RE
    Biophys J; 1989 Sep; 56(3):565-77. PubMed ID: 2551408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.