BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27653628)

  • 1. Folding and Unfolding Kinetics of Unpurified Proteins by Pulse Proteolysis.
    Shima K; Okada J; Sano S; Takano K
    Protein Pept Lett; 2016; 23(11):976-987. PubMed ID: 27653628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow unfolding pathway of hyperthermophilic Tk-RNase H2 examined by pulse proteolysis using the stable protease Tk-subtilisin.
    Okada J; Koga Y; Takano K; Kanaya S
    Biochemistry; 2012 Nov; 51(45):9178-91. PubMed ID: 23106363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating protein unfolding kinetics by pulse proteolysis.
    Na YR; Park C
    Protein Sci; 2009 Feb; 18(2):268-76. PubMed ID: 19177560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing membrane protein unfolding with pulse proteolysis.
    Schlebach JP; Kim MS; Joh NH; Bowie JU; Park C
    J Mol Biol; 2011 Mar; 406(4):545-51. PubMed ID: 21192947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The folding and unfolding behavior of ribonuclease H on the ribosome.
    Jensen MK; Samelson AJ; Steward A; Clarke J; Marqusee S
    J Biol Chem; 2020 Aug; 295(33):11410-11417. PubMed ID: 32527724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt bridge as a gatekeeper against partial unfolding.
    Hinzman MW; Essex ME; Park C
    Protein Sci; 2016 May; 25(5):999-1009. PubMed ID: 26916981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescence, and NMR study.
    Yamasaki K; Ogasahara K; Yutani K; Oobatake M; Kanaya S
    Biochemistry; 1995 Dec; 34(51):16552-62. PubMed ID: 8527428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in activation rate of Pro-Tk-subtilisin by a single nonpolar-to-polar amino acid substitution at the hydrophobic core of the propeptide domain.
    Yuzaki K; Sanda Y; You DJ; Uehara R; Koga Y; Kanaya S
    Protein Sci; 2013 Dec; 22(12):1711-21. PubMed ID: 24115021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding.
    Park C; Marqusee S
    Nat Methods; 2005 Mar; 2(3):207-12. PubMed ID: 15782190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic effect on the stability and folding of a hyperthermophilic protein.
    Dong H; Mukaiyama A; Tadokoro T; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2008 Apr; 378(1):264-72. PubMed ID: 18353366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proline effect on the thermostability and slow unfolding of a hyperthermophilic protein.
    Takano K; Higashi R; Okada J; Mukaiyama A; Tadokoro T; Koga Y; Kanaya S
    J Biochem; 2009 Jan; 145(1):79-85. PubMed ID: 18977771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of unusually thermostable CutA1 protein from human brain and its protease susceptibility.
    Bagautdinov B; Matsuura Y; Yamamoto H; Sawano M; Ogasahara K; Takehira M; Kunishima N; Katoh E; Yutani K
    J Biochem; 2015 Mar; 157(3):169-76. PubMed ID: 25344844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effect of temperature on transient partial unfolding by proteolysis.
    Youn K; Park C
    Protein Pept Lett; 2009; 16(9):1093-7. PubMed ID: 19508205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmolyte effect on the stability and folding of a hyperthermophilic protein.
    Mukaiyama A; Koga Y; Takano K; Kanaya S
    Proteins; 2008 Apr; 71(1):110-8. PubMed ID: 17932924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy.
    Mizuguchi M; Arai M; Ke Y; Nitta K; Kuwajima K
    J Mol Biol; 1998; 283(1):265-77. PubMed ID: 9761689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding-refolding kinetics of the tryptophan synthase alpha subunit by CD and fluorescence measurements.
    Ogasahara K; Yutani K
    J Mol Biol; 1994 Mar; 236(4):1227-40. PubMed ID: 8120898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An engineered disulfide cross-link accelerates the refolding rate of calcium-free subtilisin by 850-fold.
    Strausberg S; Alexander P; Wang L; Gallagher T; Gilliland G; Bryan P
    Biochemistry; 1993 Oct; 32(39):10371-7. PubMed ID: 8399180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding of subtilisin BPN': role of the pro-sequence.
    Eder J; Rheinnecker M; Fersht AR
    J Mol Biol; 1993 Sep; 233(2):293-304. PubMed ID: 8377204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions.
    Kiefhaber T; Quaas R; Hahn U; Schmid FX
    Biochemistry; 1990 Mar; 29(12):3061-70. PubMed ID: 2110824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.