These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27653629)

  • 1. The Nearest-Neighbor Effect on Random-Coil NMR Chemical Shifts Demonstrated Using a Low-Complexity Amino-Acid Sequence.
    Chen TC; Hsiao CL; Huang SJ; Huang JR
    Protein Pept Lett; 2016; 23(11):967-975. PubMed ID: 27653629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins.
    Nielsen JT; Mulder FAA
    J Biomol NMR; 2018 Mar; 70(3):141-165. PubMed ID: 29399725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range.
    Hendus-Altenburger R; Fernandes CB; Bugge K; Kunze MBA; Boomsma W; Kragelund BB
    J Biomol NMR; 2019 Dec; 73(12):713-725. PubMed ID: 31598803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution.
    Kjaergaard M; Poulsen FM
    J Biomol NMR; 2011 Jun; 50(2):157-65. PubMed ID: 21604143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides.
    Schweitzer-Stenner R; Toal SE
    Mol Biosyst; 2016 Oct; 12(11):3294-3306. PubMed ID: 27545097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins.
    Jung YS; Oh KI; Hwang GS; Cho M
    Chirality; 2014 Sep; 26(9):443-52. PubMed ID: 24453185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH.
    Kjaergaard M; Brander S; Poulsen FM
    J Biomol NMR; 2011 Feb; 49(2):139-49. PubMed ID: 21234644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins.
    Shen Y; Roche J; Grishaev A; Bax A
    Protein Sci; 2018 Jan; 27(1):146-158. PubMed ID: 28884933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-dependent correction of random coil NMR chemical shifts.
    Schwarzinger S; Kroon GJ; Foss TR; Chung J; Wright PE; Dyson HJ
    J Am Chem Soc; 2001 Apr; 123(13):2970-8. PubMed ID: 11457007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study.
    Chaves-Arquero B; Pantoja-Uceda D; Roque A; Ponte I; Suau P; Jiménez MA
    J Biomol NMR; 2018 Dec; 72(3-4):139-148. PubMed ID: 30414042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-specific random coil chemical shifts of intrinsically disordered proteins.
    Tamiola K; Acar B; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(51):18000-3. PubMed ID: 21128621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic approach to determining unbiased random-coil carbon-13 chemical shift values from the protein chemical shift database.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2006 Jul; 35(3):155-65. PubMed ID: 16799859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Unfolded Proteins from the Intrinsic ϕ/ψ Propensities of the AAXAA Host-Guest Series.
    Towse CL; Vymetal J; Vondrasek J; Daggett V
    Biophys J; 2016 Jan; 110(2):348-361. PubMed ID: 26789758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using chemical shifts to assess transient secondary structure and generate ensemble structures of intrinsically disordered proteins.
    Kashtanov S; Borcherds W; Wu H; Daughdrill GW; Ytreberg FM
    Methods Mol Biol; 2012; 895():139-52. PubMed ID: 22760318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins.
    Borcherds WM; Daughdrill GW
    Methods Enzymol; 2018; 611():101-136. PubMed ID: 30471686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects.
    Wishart DS; Bigam CG; Holm A; Hodges RS; Sykes BD
    J Biomol NMR; 1995 Jan; 5(1):67-81. PubMed ID: 7881273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random coil shifts of posttranslationally modified amino acids.
    Conibear AC; Rosengren KJ; Becker CFW; Kaehlig H
    J Biomol NMR; 2019 Nov; 73(10-11):587-599. PubMed ID: 31317299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides.
    Schweitzer-Stenner R
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.