BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27653760)

  • 1. Measuring gait with an accelerometer-based wearable: influence of device location, testing protocol and age.
    Del Din S; Hickey A; Hurwitz N; Mathers JC; Rochester L; Godfrey A
    Physiol Meas; 2016 Oct; 37(10):1785-1797. PubMed ID: 27653760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
    Hickey A; Del Din S; Rochester L; Godfrey A
    Physiol Meas; 2017 Jan; 38(1):N1-N15. PubMed ID: 27941238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6.
    Hickey A; Gunn E; Alcock L; Del Din S; Godfrey A; Rochester L; Galna B
    Physiol Meas; 2016 Nov; 37(11):N105-N117. PubMed ID: 27779133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: a feasibility, validity and reliability study.
    Moore SA; Hickey A; Lord S; Del Din S; Godfrey A; Rochester L
    J Neuroeng Rehabil; 2017 Dec; 14(1):130. PubMed ID: 29284544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson's Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity.
    Geerse DJ; Coolen B; Roerdink M
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of Walking Speed Estimation from Trunk Mounted Accelerometers for a Range of Walking Speeds.
    Rispens SM; Cox LGE; Ejupi A; Delbaere K; Annegarn J; Bonomi AG
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket.
    Silsupadol P; Teja K; Lugade V
    Gait Posture; 2017 Oct; 58():516-522. PubMed ID: 28961548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The accuracy of commercially available instrumented insoles (ARION) for measuring spatiotemporal running metrics.
    Van Hooren B; Willems P; Plasqui G; Meijer K
    Scand J Med Sci Sports; 2023 Sep; 33(9):1703-1715. PubMed ID: 37272215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consistency of gait characteristics as determined from acceleration data collected at different trunk locations.
    Rispens SM; Pijnappels M; van Schooten KS; Beek PJ; Daffertshofer A; van Dieën JH
    Gait Posture; 2014; 40(1):187-92. PubMed ID: 24780202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait.
    Nelson AJ; Zwick D; Brody S; Doran C; Pulver L; Rooz G; Sadownick M; Nelson R; Rothman J
    NeuroRehabilitation; 2002; 17(3):255-62. PubMed ID: 12237507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reliability of gait variability measures for individuals with Parkinson's disease and healthy older adults - The effect of gait speed.
    Rennie L; Löfgren N; Moe-Nilssen R; Opheim A; Dietrichs E; Franzén E
    Gait Posture; 2018 May; 62():505-509. PubMed ID: 29679922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait asymmetry assessment for older adults by measuring circular gait speed.
    Ichihashi N; Ikezoe T; Sato S; Ibuki S
    Geriatr Gerontol Int; 2019 Aug; 19(8):736-739. PubMed ID: 31106945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait variability in community-dwelling older adults.
    Brach JS; Berthold R; Craik R; VanSwearingen JM; Newman AB
    J Am Geriatr Soc; 2001 Dec; 49(12):1646-50. PubMed ID: 11843998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait Characteristics under Imposed Challenge Speed Conditions in Patients with Parkinson's Disease During Overground Walking.
    Lee M; Youm C; Noh B; Park H; Cheon SM
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32290054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of gait patterns during unconstrained walking assessed by satellite positioning (GPS).
    Terrier P; Schutz Y
    Eur J Appl Physiol; 2003 Nov; 90(5-6):554-61. PubMed ID: 12905048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.