BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27653794)

  • 1. Adaptive optics full-field optical coherence tomography.
    Xiao P; Fink M; Boccara AC
    J Biomed Opt; 2016 Dec; 21(12):121505. PubMed ID: 27653794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the impact of optical aberrations in en-face full-field OCT microscopy.
    Blavier M; Glanc M; Rousset G
    Opt Express; 2021 Jan; 29(2):2204-2226. PubMed ID: 33726421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manifestation of aberrations in full-field optical coherence tomography.
    Barolle V; Scholler J; Mecê P; Chassot JM; Groux K; Fink M; Claude Boccara A; Aubry A
    Opt Express; 2021 Jul; 29(14):22044-22065. PubMed ID: 34265978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of static and dynamic ocular aberrations on full-field optical coherence tomography for in vivo high-resolution retinal imaging.
    Cai Y; Thouvenin O; Grieve K; Mecê P
    Opt Lett; 2024 May; 49(9):2209-2212. PubMed ID: 38691681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavefront measurement using computational adaptive optics.
    South FA; Liu YZ; Bower AJ; Xu Y; Carney PS; Boppart SA
    J Opt Soc Am A Opt Image Sci Vis; 2018 Mar; 35(3):466-473. PubMed ID: 29522050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm.
    Zhu D; Wang R; Žurauskas M; Pande P; Bi J; Yuan Q; Wang L; Gao Z; Boppart SA
    Opt Express; 2020 Aug; 28(16):23306-23319. PubMed ID: 32752329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.
    Fernández E; Drexler W
    Opt Express; 2005 Oct; 13(20):8184-97. PubMed ID: 19498848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive-glasses time-domain FFOCT for wide-field high-resolution retinal imaging with increased SNR.
    Scholler J; Groux K; Grieve K; Boccara C; Mecê P
    Opt Lett; 2020 Nov; 45(21):5901-5904. PubMed ID: 33137028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subaperture correlation based digital adaptive optics for full field optical coherence tomography.
    Kumar A; Drexler W; Leitgeb RA
    Opt Express; 2013 May; 21(9):10850-66. PubMed ID: 23669942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid crystal wavefront correction based on improved machine learning for free-space optical communication.
    Guo H; Tang W; Wang Z; Yuan L; Li Y; He D; Wang Q; Huang Y
    Appl Opt; 2023 Dec; 62(36):9470-9475. PubMed ID: 38108771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral resolution enhancement using programmable phase modulator in optical coherence tomography.
    Shirazi MF; Cho NH; Jung W; Kim J
    Biomed Mater Eng; 2015; 26 Suppl 1():S1465-71. PubMed ID: 26405909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple wavefront correction framework for two-photon microscopy of in-vivo brain.
    Galwaduge PT; Kim SH; Grosberg LE; Hillman EM
    Biomed Opt Express; 2015 Aug; 6(8):2997-3013. PubMed ID: 26309763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
    Antonello J; van Werkhoven T; Verhaegen M; Truong HH; Keller CU; Gerritsen HC
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1337-47. PubMed ID: 24977374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberration measurement and correction on a large field of view in fluorescence microscopy.
    Furieri T; Ancora D; Calisesi G; Morara S; Bassi A; Bonora S
    Biomed Opt Express; 2022 Jan; 13(1):262-273. PubMed ID: 35154869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
    Scrimgeour J; Curtis JE
    Opt Express; 2012 Jun; 20(13):14534-41. PubMed ID: 22714514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator.
    Fernández EJ; Povazay B; Hermann B; Unterhuber A; Sattmann H; Prieto PM; Leitgeb R; Ahnelt P; Artal P; Drexler W
    Vision Res; 2005 Dec; 45(28):3432-44. PubMed ID: 16249013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended field-of-view adaptive optics in microscopy via numerical field segmentation.
    Rajaeipour P; Dorn A; Banerjee K; Zappe H; Ataman Ç
    Appl Opt; 2020 Apr; 59(12):3784-3791. PubMed ID: 32400506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.