BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27654066)

  • 1. Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone.
    Uscátegui YL; Arévalo FR; Díaz LE; Cobo MI; Valero MF
    J Biomater Sci Polym Ed; 2016 Dec; 27(18):1860-1879. PubMed ID: 27654066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil.
    Arévalo F; Uscategui YL; Diaz L; Cobo M; Valero MF
    J Biomater Appl; 2016 Nov; 31(5):708-720. PubMed ID: 27789793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidate Polyurethanes Based on Castor Oil (
    Uscátegui YL; Díaz LE; Gómez-Tejedor JA; Vallés-Lluch A; Vilariño-Feltrer G; Serrano MA; Valero MF
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30634633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Polyurethanes Based on Castor Oil and Poly (3-hydroxybutyrate).
    Saha P; Khomlaem C; Aloui H; Kim BS
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33923329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S
    J Biomed Mater Res A; 2013 Jun; 101(6):1599-611. PubMed ID: 23172859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyurethane biocidal polymeric surface modifiers.
    Makal U; Wood L; Ohman DE; Wynne KJ
    Biomaterials; 2006 Mar; 27(8):1316-26. PubMed ID: 16181672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.
    Zhang C; Ding R; Kessler MR
    Macromol Rapid Commun; 2014 Jun; 35(11):1068-74. PubMed ID: 24668919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Characterization of Polycaprolactone-Based Polyurethanes for the Fabrication of Elastic Guided Bone Regeneration Membrane.
    Lee SY; Wu SC; Chen H; Tsai LL; Tzeng JJ; Lin CH; Lin YM
    Biomed Res Int; 2018; 2018():3240571. PubMed ID: 29862262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.
    Solanki A; Mehta J; Thakore S
    Carbohydr Polym; 2014 Sep; 110():338-44. PubMed ID: 24906764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Polyol/Crosslinker Blend Composition on Phase Separation and Thermo-Mechanical Properties of Polyurethane Thin Films.
    Arévalo-Alquichire S; Morales-Gonzalez M; Navas-Gómez K; Diaz LE; Gómez-Tejedor JA; Serrano MA; Valero MF
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32192093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Chitosan in Polyurethanes Based on Modified Castor Oil for Cardiovascular Applications.
    Morales-González M; Navas-Gómez K; Diaz LE; Gómez-Tejedor JA; Valero MF
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation.
    Cassales A; Ramos LA; Frollini E
    Int J Biol Macromol; 2020 Feb; 145():28-41. PubMed ID: 31874274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application.
    Yari A; Yeganeh H; Bakhshi H; Gharibi R
    J Biomed Mater Res A; 2014 Jan; 102(1):84-96. PubMed ID: 23606508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S; Shokrgozar MA; Yari A; Saeedi-Eslami SN
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):153-64. PubMed ID: 25428057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Synthesis and characterization of polylactide-based thermosetting polyurethanes with shape memory properties].
    Shi S; Gu L; Yang Y; Yu H; Chen R; Xiao X; Qiu J
    Sheng Wu Gong Cheng Xue Bao; 2016 Jun; 32(6):831-838. PubMed ID: 29019191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications.
    Wu GH; Hsu SH
    Colloids Surf B Biointerfaces; 2016 Oct; 146():825-32. PubMed ID: 27451371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New biobased high functionality polyols and their use in polyurethane coatings.
    Pan X; Webster DC
    ChemSusChem; 2012 Feb; 5(2):419-29. PubMed ID: 22271418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial nanostructured composite films for biomedical applications: microstructural characteristics, biocompatibility, and antibacterial mechanisms.
    Lee FP; Wang DY; Chen LK; Kung CM; Wu YC; Ou KL; Yu CH
    Biofouling; 2013; 29(3):295-305. PubMed ID: 23528126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.