BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27654082)

  • 1. High Permeate Recovery for Concentrate Reduction by Integrated Membrane Process in Textile Effluent.
    Sudhakar M; Vijayalakshmi P; Nilavunesan D; Thiruvengadaravi KV; Baskaralingam P; Sivanesan S
    Water Environ Res; 2016; 88(9):838-846. PubMed ID: 27654082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane.
    Yang C; Li L; Shi J; Long C; Li A
    J Hazard Mater; 2015 Mar; 284():50-7. PubMed ID: 25463217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration.
    Chen Q; Yang Y; Zhou M; Liu M; Yu S; Gao C
    J Hazard Mater; 2015 Mar; 284():121-9. PubMed ID: 25463225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of textile dyehouse effluent using ceramic membrane based process in combination with chemical pretreatment.
    Bhattacharya P; Ghosh S; Majumdar S; Bandyopadhyay S
    J Environ Sci Eng; 2013 Oct; 55(4):491-7. PubMed ID: 25906595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on quality of effluent discharge by the Tiruppur textile dyeing units and its impact on river Noyyal, Tamil Nadu (India).
    Rajkumar AS; Nagan S
    J Environ Sci Eng; 2010 Oct; 52(4):333-42. PubMed ID: 22312804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical oxidation of textile wastewater and its reuse.
    Mohan N; Balasubramanian N; Basha CA
    J Hazard Mater; 2007 Aug; 147(1-2):644-51. PubMed ID: 17336454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated nanofiltration and upflow anaerobic sludge blanket treatment of textile wastewater for in-plant reuse.
    Gomes AC; Gonçalves IC; de Pinho MN; Porter JJ
    Water Environ Res; 2007 May; 79(5):498-506. PubMed ID: 17571839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of different textile fibers on characterization of dyeing wastewater and final effluent.
    Dos Santos RF; Ramlow H; Dolzan N; Machado RAF; de Aguiar CRL; Marangoni C
    Environ Monit Assess; 2018 Oct; 190(11):693. PubMed ID: 30382411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot scale nanofiltration membrane separation for waste management in textile industry.
    Koyuncu I; Kural E; Topacik D
    Water Sci Technol; 2001; 43(10):233-40. PubMed ID: 11436786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of operating conditions on ceramic ultrafiltration membrane performance when treating textile effluents.
    Barredo-Damas S; Alcaina-Miranda MI; Gemma M; Iborra-Clar MI; Mendoza-Roca JA
    Water Sci Technol; 2011; 64(11):2169-76. PubMed ID: 22156119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater.
    Han G; Liang CZ; Chung TS; Weber M; Staudt C; Maletzko C
    Water Res; 2016 Mar; 91():361-70. PubMed ID: 26820358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the behaviour of different NF membranes for the reclamation of a secondary textile effluent in rinsing processes.
    Bes-Piá A; Cuartas-Uribe B; Mendoza-Roca JA; Alcaina-Miranda MI
    J Hazard Mater; 2010 Jun; 178(1-3):341-8. PubMed ID: 20149527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A scientific approach to wastewater recovery and reuse in the textile industry.
    Orhon D; Babuna FG; Kabdaslí I; Insel FG; Karahan O; Dulkadiroğlu H; Doğruel S; Sevimil F; Yediler A
    Water Sci Technol; 2001; 43(11):223-31. PubMed ID: 11443966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field on fouling control of ultrafiltration membranes applied in treatment of a synthetic textile effluent.
    Carlesso F; Zin G; de Souza SM; Luccio MD; de Souza AA; Oliveira JV
    Environ Technol; 2016; 37(8):952-9. PubMed ID: 26496410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of textile dye treatment by biosorption and membrane bioreactor.
    Chamam B; Heran M; Amar RB; Grasmick A
    Environ Technol; 2007 Dec; 28(12):1325-31. PubMed ID: 18341143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of the results for the synthetic and actual reactive dye bath effluent treatment by nanofiltration membranes.
    Koyuncu I; Topacik D; Yuksel E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(10):2209-18. PubMed ID: 14524675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hygienic evaluation of pollution of reservoir water by dyes from dye-processing plants of the textile industry].
    Dmitriev MT; Zenina GA
    Gig Sanit; 1990 May; (5):91-2. PubMed ID: 2397916
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.