These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27654279)

  • 1. Characteristics of Plasmonic Bragg Reflectors with Graphene-Based Silicon Grating.
    Song C; Xia X; Hu ZD; Liang Y; Wang J
    Nanoscale Res Lett; 2016 Dec; 11(1):419. PubMed ID: 27654279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Multiple-Step Plasmonic Bragg Reflectors with Graphene-Based Modulated Grating.
    Qian Q; Liang Y; Liang Y; Shao H; Zhang M; Xiao T; Wang J
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth.
    Tao J; Yu X; Hu B; Dubrovkin A; Wang QJ
    Opt Lett; 2014 Jan; 39(2):271-4. PubMed ID: 24562124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detuned Plasmonic Bragg Grating Sensor Based on a Defect Metal-Insulator-Metal Waveguide.
    Qu S; Song C; Xia X; Liang X; Tang B; Hu ZD; Wang J
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles.
    Liu Y; Liu Y; Kim J
    Opt Express; 2010 May; 18(11):11589-98. PubMed ID: 20589019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable plasmonic resonator using conductivity modulated Bragg reflectors.
    Pathiranage S; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 May; 33(24):. PubMed ID: 33631723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-resonator-integrated guided-mode resonance band-stop reflector.
    Ura S; Nakata M; Yanagida K; Inoue J; Kintaka K
    Opt Express; 2016 Jun; 24(13):15120-7. PubMed ID: 27410663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-tunable one-dimensional plasmonic photonic crystals based on a single graphene layer and a semiconductor constituent.
    Ghasempour Ardakani A; Sedaghatnejad M
    Appl Opt; 2017 Sep; 56(25):7243-7248. PubMed ID: 29047986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film.
    Gordon R; Marthandam P
    Opt Express; 2007 Oct; 15(20):12995-3002. PubMed ID: 19550569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating.
    Binfeng Y; Guohua H; Ruohu Z; Yiping C
    Opt Express; 2014 Nov; 22(23):28662-70. PubMed ID: 25402107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating.
    Park J; Kim H; Lee B
    Opt Express; 2008 Jan; 16(1):413-25. PubMed ID: 18521173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low loss Bragg reflectors on SiO(2)-Si(3)N(4)-SiO(2) rib waveguides.
    Lee HJ; Henry CH; Kazarinov RF; Orlowsky KJ
    Appl Opt; 1987 Jul; 26(13):2618-20. PubMed ID: 20489930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solgel grating waveguides for distributed Bragg reflector lasers.
    Fardad MA; Luo H; Beregovski Y; Fallahi M
    Opt Lett; 1999 Apr; 24(7):460-2. PubMed ID: 18071539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors.
    Li G; Cai L; Xiao F; Pei Y; Xu A
    Opt Express; 2010 May; 18(10):10487-99. PubMed ID: 20588902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system.
    Xu H; He Z; Chen Z; Nie G; Li H
    Opt Express; 2020 Aug; 28(18):25767-25777. PubMed ID: 32906861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High fabrication-tolerant narrowband perfect graphene absorber based on guided-mode resonance in distributed Bragg reflector.
    Lee S; Heo H; Kim S
    Sci Rep; 2019 Mar; 9(1):4294. PubMed ID: 30862879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method.
    Niu J; Luo M; Zhu J; Liu QH
    Opt Express; 2015 Feb; 23(4):4539-51. PubMed ID: 25836491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mono- and Bilayer Graphene/Silicon Photodetectors Based on Optical Microcavities Formed by Metallic and Double Silicon-on-Insulator Reflectors: A Theoretical Investigation.
    Crisci T; Moretti L; Gioffrè M; Casalino M
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized reflector stacks for solidly mounted bulk acoustic wave resonators.
    Jose S; Jansman AB; Hueting RJ; Schmitz J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2753-63. PubMed ID: 21156371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Plasmon Cavities Made with Silicon Carbide.
    Li K; Fitzgerald JM; Xiao X; Caldwell JD; Zhang C; Maier SA; Li X; Giannini V
    ACS Omega; 2017 Jul; 2(7):3640-3646. PubMed ID: 31457678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.