These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27654308)

  • 1. Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications.
    Yilmaz ZE; Jérôme C
    Macromol Biosci; 2016 Dec; 16(12):1745-1761. PubMed ID: 27654308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications.
    Wang YC; Yuan YY; Du JZ; Yang XZ; Wang J
    Macromol Biosci; 2009 Dec; 9(12):1154-64. PubMed ID: 19924681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides.
    Yin Q; Yin L; Wang H; Cheng J
    Acc Chem Res; 2015 Jul; 48(7):1777-87. PubMed ID: 26065588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joining Two Natural Motifs: Catechol-Containing Poly(phosphoester)s.
    Becker G; Ackermann LM; Schechtel E; Klapper M; Tremel W; Wurm FR
    Biomacromolecules; 2017 Mar; 18(3):767-777. PubMed ID: 28140560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Degradable Polyphosphoester Networks with Tailor-Made Stiffness and Hydrophilicity as Scaffolds for Tissue Engineering.
    Riva R; Shah U; Thomassin JM; Yilmaz Z; Lecat A; Colige A; Jérôme C
    Biomacromolecules; 2020 Feb; 21(2):349-355. PubMed ID: 31687811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbranched polyphosphates: synthesis, functionalization and biomedical applications.
    Liu J; Huang W; Pang Y; Yan D
    Chem Soc Rev; 2015 Jun; 44(12):3942-53. PubMed ID: 26008957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.
    Thomas AW; Dove AP
    Macromol Biosci; 2016 Dec; 16(12):1762-1775. PubMed ID: 27654885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyphosphoesters in drug and gene delivery.
    Zhao Z; Wang J; Mao HQ; Leong KW
    Adv Drug Deliv Rev; 2003 Apr; 55(4):483-99. PubMed ID: 12706047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable Kojic Acid-Based Polymers: Controlled Delivery of Bioactives for Melanogenesis Inhibition.
    Faig JJ; Moretti A; Joseph LB; Zhang Y; Nova MJ; Smith K; Uhrich KE
    Biomacromolecules; 2017 Feb; 18(2):363-373. PubMed ID: 28026947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications.
    Hu Y; Li Y; Xu FJ
    Acc Chem Res; 2017 Feb; 50(2):281-292. PubMed ID: 28068064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems.
    Shenoi RA; Lai BF; Imran ul-haq M; Brooks DE; Kizhakkedathu JN
    Biomaterials; 2013 Aug; 34(25):6068-81. PubMed ID: 23688604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles.
    Han S; Liu Y; Nie X; Xu Q; Jiao F; Li W; Zhao Y; Wu Y; Chen C
    Small; 2012 May; 8(10):1596-606. PubMed ID: 22411637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon-polymer hybrid materials for drug delivery.
    McInnes SJ; Voelcker NH
    Future Med Chem; 2009 Sep; 1(6):1051-74. PubMed ID: 21425994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological evaluation of polyester dendrimer: poly(ethylene oxide) "bow-tie" hybrids with tunable molecular weight and architecture.
    Gillies ER; Dy E; Fréchet JM; Szoka FC
    Mol Pharm; 2005; 2(2):129-38. PubMed ID: 15804187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone Mineral Affinity of Polyphosphodiesters.
    Iwasaki Y
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells.
    Shenoi RA; Narayanannair JK; Hamilton JL; Lai BF; Horte S; Kainthan RK; Varghese JP; Rajeev KG; Manoharan M; Kizhakkedathu JN
    J Am Chem Soc; 2012 Sep; 134(36):14945-57. PubMed ID: 22906064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.
    Fukushima K
    Biomater Sci; 2016 Jan; 4(1):9-24. PubMed ID: 26323327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione-triggered disassembly of dual disulfide located degradable nanocarriers of polylactide-based block copolymers for rapid drug release.
    Ko NR; Oh JK
    Biomacromolecules; 2014 Aug; 15(8):3180-9. PubMed ID: 25026022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation.
    Wang YC; Tang LY; Li Y; Wang J
    Biomacromolecules; 2009 Jan; 10(1):66-73. PubMed ID: 19133835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic polymerization of cyclic monomers in ionic liquids as a prospective synthesis method for polyesters used in drug delivery systems.
    Piotrowska U; Sobczak M
    Molecules; 2014 Dec; 20(1):1-23. PubMed ID: 25546617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.