These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27654883)

  • 1. Comprehensive Reactive Receiver Modeling for Diffusive Molecular Communication Systems: Reversible Binding, Molecule Degradation, and Finite Number of Receptors.
    Ahmadzadeh A; Arjmandi H; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):713-727. PubMed ID: 27654883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving receiver performance of diffusive molecular communication with enzymes.
    Noel A; Cheung KC; Schober R
    IEEE Trans Nanobioscience; 2014 Mar; 13(1):31-43. PubMed ID: 24594512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular communication using Brownian motion with drift.
    Kadloor S; Adve RS; Eckford AW
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):89-99. PubMed ID: 22434820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication.
    Huang S; Lin L; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusive Molecular Communication in Biological Cylindrical Environment.
    Zoofaghari M; Arjmandi H
    IEEE Trans Nanobioscience; 2019 Jan; 18(1):74-83. PubMed ID: 30530368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Two Receivers on Broadcast Molecular Communication Systems.
    Lu Y; Higgins MD; Noel A; Leeson MS; Chen Y
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):891-900. PubMed ID: 27775906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Transmitted Molecules and Decision Threshold for Drift-Induced Diffusive Molecular Channel With Mobile Nanomachines.
    Chouhan L; Sharma PK; Varshney N
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):651-660. PubMed ID: 31425042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal receiver design for diffusive molecular communication with flow and additive noise.
    Noel A; Cheung KC; Schober R
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):350-62. PubMed ID: 25095257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication.
    Huang S; Lin L; Guo W; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):422-433. PubMed ID: 32275604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.
    Arifler D; Arifler D
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):157-165. PubMed ID: 28368824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    PLoS One; 2018; 13(2):e0192202. PubMed ID: 29415019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum Likelihood Detection With Ligand Receptors for Diffusion-Based Molecular Communications in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):44-54. PubMed ID: 29570074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Reactive Obstacle on Molecular Communication between Nanomachines.
    Al-Zurbi MM; Mohan AS; Ling SSH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4468-4471. PubMed ID: 30441343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achievable Strength-Based Signal Detection in Quantity-Constrained PAM OOK Concentration-Encoded Molecular Communication.
    Mahfuz MU
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):619-626. PubMed ID: 27834649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Analytical Model for Molecular Propagation in Nanocommunication via Filaments Using Relay-Enabled Nodes.
    Darchinimaragheh K; Alfa AS
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):870-81. PubMed ID: 26529773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and analysis of molecular relay channels: an information theoretic approach.
    Nakano T; Liu JQ
    IEEE Trans Nanobioscience; 2010 Sep; 9(3):213-21. PubMed ID: 20525537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Nanoparticle-Based Molecular Communication in Microfluidic Environments.
    Wicke W; Ahmadzadeh A; Jamali V; Unterweger H; Alexiou C; Schober R
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):156-169. PubMed ID: 30703034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation Modeling and Analysis of Molecular Motors in Molecular Communication.
    Chahibi Y; Akyildiz IF; Balasingham I
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):917-927. PubMed ID: 28092503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.