BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2765504)

  • 1. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanism of chlorpromazine inhibition of erythrocyte 3-O-methylglucose transport.
    Owen NE; Gunn RB
    Biochim Biophys Acta; 1983 Jan; 727(1):213-6. PubMed ID: 6824652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two independent modes of action of ATP on human erythrocyte sugar transport.
    Helgerson AL; Hebert DN; Naderi S; Carruthers A
    Biochemistry; 1989 Jul; 28(15):6410-7. PubMed ID: 2506926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity.
    Whitesell RR; Regen DM; Beth AH; Pelletier DK; Abumrad NA
    Biochemistry; 1989 Jun; 28(13):5618-25. PubMed ID: 2775725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters for 3-O-methyl glucose transport in human erythrocytes and fit of asymmetric carrier kinetics.
    Baker GF; Widdas WF
    J Physiol; 1988 Jan; 395():57-76. PubMed ID: 3411487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar transport in reversibly hemolyzed avian erythrocytes.
    Whitfield CF
    Biochim Biophys Acta; 1976 Jun; 436(1):199-209. PubMed ID: 1276211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of sugar transport in the pigeon red blood cell.
    Simons TJ
    J Physiol; 1983 May; 338():477-99. PubMed ID: 6410059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar transport in giant barnacle muscle fibres.
    Carruthers A
    J Physiol; 1983 Mar; 336():377-96. PubMed ID: 6875913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-O-methyl-D-glucose transport in rat red cells: effects of heavy water.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):37-48. PubMed ID: 1851040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin.
    Sergeant S; Kim HD
    J Biol Chem; 1985 Nov; 260(27):14677-82. PubMed ID: 2997220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of calcium in the regulation of sugar transport in the pigeon red blood cell.
    Simons TJ
    J Physiol; 1983 May; 338():501-25. PubMed ID: 6192238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of hexose transport by adenosine derivatives in human erythrocytes.
    May JM
    J Cell Physiol; 1988 May; 135(2):332-8. PubMed ID: 3372599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated net efflux of 3-O-methylglucose from rat adipocytes: a reevaluation.
    Wheeler TJ
    Biochim Biophys Acta; 1994 Mar; 1190(2):345-54. PubMed ID: 8142435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for the facilitated diffusion of substrates across cell membranes.
    Carruthers A
    Biochemistry; 1991 Apr; 30(16):3898-906. PubMed ID: 2018761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-O-methylglucose transport in internally dialysed giant axons of Loligo.
    Baker PF; Carruthers A
    J Physiol; 1981 Jul; 316():503-25. PubMed ID: 7320879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.