BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27655481)

  • 21. Growth of LNCaP cells in monoculture and coculture with osteoblasts and response to tNOX inhibitors.
    Axanova L; Morré DJ; Morré DM
    Cancer Lett; 2005 Jul; 225(1):35-40. PubMed ID: 15922855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sirtuin 1 (SIRT1) Deacetylase Activity and NAD⁺/NADH Ratio Are Imperative for Capsaicin-Mediated Programmed Cell Death.
    Lee YH; Chen HY; Su LJ; Chueh PJ
    J Agric Food Chem; 2015 Aug; 63(33):7361-70. PubMed ID: 26255724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of a tumor-associated NADH oxidase (tNOX) from the HeLa cell surface.
    Yantiri F; Morré DJ
    Arch Biochem Biophys; 2001 Jul; 391(2):149-59. PubMed ID: 11437345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface.
    Chueh PJ; Kim C; Cho N; Morré DM; Morré DJ
    Biochemistry; 2002 Mar; 41(11):3732-41. PubMed ID: 11888291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenoxodiol treatment alters the subsequent response of ENOX2 (tNOX) and growth of hela cells to paclitaxel and cisplatin.
    Morré DJ; McClain N; Wu LY; Kelly G; Morré DM
    Mol Biotechnol; 2009 May; 42(1):100-9. PubMed ID: 19156549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ECTO-NOX target for the anticancer isoflavene phenoxodiol.
    Morré DJ; Chueh PJ; Yagiz K; Balicki A; Kim C; Morré DM
    Oncol Res; 2007; 16(7):299-312. PubMed ID: 17518268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase.
    Jiang Z; Gorenstein NM; Morré DM; Morré DJ
    Biochemistry; 2008 Dec; 47(52):14028-38. PubMed ID: 19055324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capsaicin exerts therapeutic effects by targeting tNOX-SIRT1 axis and augmenting ROS-dependent autophagy in melanoma cancer cells.
    Islam A; Hsieh PF; Liu PF; Chou JC; Liao JW; Hsieh MK; Chueh PJ
    Am J Cancer Res; 2021; 11(9):4199-4219. PubMed ID: 34659883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative splicing as the basis for specific localization of tNOX, a unique hydroquinone (NADH) oxidase, to the cancer cell surface.
    Tang X; Tian Z; Chueh PJ; Chen S; Morré DM; Morré DJ
    Biochemistry; 2007 Oct; 46(43):12337-46. PubMed ID: 17924659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation of serine-504 of tNOX (ENOX2) modulates cell proliferation and migration in cancer cells.
    Zeng ZM; Chuang SM; Chang TC; Hong CW; Chou JC; Yang JJ; Chueh PJ
    Exp Cell Res; 2012 Aug; 318(14):1759-66. PubMed ID: 22659163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stress-induced down-regulation of tumor-associated NADH oxidase during apoptosis in transformed cells.
    Mao LC; Wang HM; Lin YY; Chang TK; Hsin YH; Chueh PJ
    FEBS Lett; 2008 Oct; 582(23-24):3445-50. PubMed ID: 18789934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS).
    Morré DJ; Morre DM
    Mol Cell Biochem; 2006 Feb; 283(1-2):159-67. PubMed ID: 16444599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water-soluble 4-(dimethylaminomethyl)heliomycin exerts greater antitumor effects than parental heliomycin by targeting the tNOX-SIRT1 axis and apoptosis in oral cancer cells.
    Islam A; Chang YC; Chen XC; Weng CW; Chen CY; Wang CW; Chen MK; Tikhomirov AS; Shchekotikhin AE; Chueh PJ
    Elife; 2024 Apr; 12():. PubMed ID: 38567911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sera from cancer patients contain two oscillating ECTO-NOX activities with different period lengths.
    Wang S; Morré DM; Morré DJ
    Cancer Lett; 2003 Feb; 190(2):135-41. PubMed ID: 12565167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early developmental expression of a normally tumor-associated and drug-inhibited cell surface-located NADH oxidase (ENOX2) in non-cancer cells.
    Cho N; Morré DJ
    Cancer Immunol Immunother; 2009 Apr; 58(4):547-52. PubMed ID: 18704408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential health benefits of green tea (Camellia sinensis): a narrative review.
    Pastore RL; Fratellone P
    Explore (NY); 2006; 2(6):531-9. PubMed ID: 17113495
    [No Abstract]   [Full Text] [Related]  

  • 37. Downstream targets of altered sphingolipid metabolism in response to inhibition of ENOX2 by phenoxodiol.
    De Luca T; Bosneaga E; Morré DM; Morré DJ
    Biofactors; 2008; 34(3):253-60. PubMed ID: 19734127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A site-directed mutagenesis analysis of tNOX functional domains.
    Chueh PJ; Morré DM; Morré DJ
    Biochim Biophys Acta; 2002 Jan; 1594(1):74-83. PubMed ID: 11825610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engagement with tNOX (ENOX2) to Inhibit SIRT1 and Activate p53-Dependent and -Independent Apoptotic Pathways by Novel 4,11-Diaminoanthra[2,3-
    Lin CY; Islam A; Su CJ; Tikhomirov AS; Shchekotikhin AE; Chuang SM; Chueh PJ; Chen YL
    Cancers (Basel); 2019 Mar; 11(3):. PubMed ID: 30909652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spotlight on tNOX: a tumor-selective target for cancer therapies.
    Davies SL; Bozzo J
    Drug News Perspect; 2006 May; 19(4):223-5. PubMed ID: 16823496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.