BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 2765567)

  • 1. [Spectroscopy of intermolecular interactions of a tyrosine chromophore. III. Classification of the state of tyrosine residues in proteins based on their electron spectra].
    Krapunov SN; Dragan AI
    Biofizika; 1989; 34(3):357-63. PubMed ID: 2765567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II.
    Ruan K; Li J; Liang R; Xu C; Yu Y; Lange R; Balny C
    Biochem Biophys Res Commun; 2002 Apr; 293(1):593-7. PubMed ID: 12054643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1-1 glutathione S-transferase.
    Dietze EC; Wang RW; Lu AY; Atkins WM
    Biochemistry; 1996 May; 35(21):6745-53. PubMed ID: 8639625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characteristics of the tertiary structure of histone H1 from the calf thymus].
    Khrapunov SN; Protas AF; Sivolob AV; Dragan AI; Berdyshev GD
    Mol Biol (Mosk); 1984; 18(4):979-87. PubMed ID: 6504036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipid binding activity of the exchangeable apolipoprotein apolipophorin-III correlates with the formation of a partially folded conformation.
    Soulages JL; Bendavid OJ
    Biochemistry; 1998 Jul; 37(28):10203-10. PubMed ID: 9665727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-wavelength fluorescence of tyrosine and tryptophan solutions.
    Macías P; Pinto MC; Gutiérrez-Mérino C
    Biochem Int; 1987 Nov; 15(5):961-9. PubMed ID: 2963639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered tyrosine residues serve as the local probes to detect a kinetic intermediate in the folding of ribose-binding protein.
    Kim D; Kim C; Park C
    J Mol Biol; 1994 Jul; 240(4):385-95. PubMed ID: 8035461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopy reveals the origin of an intermediate wavelength form in photoactive yellow protein.
    El-Mashtoly SF; Unno M; Kumauchi M; Hamada N; Fujiwara K; Sasaki J; Imamoto Y; Kataoka M; Tokunaga F; Yamauchi S
    Biochemistry; 2004 Mar; 43(8):2279-87. PubMed ID: 14979724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophore-chromophore and chromophore-protein interactions in monomeric light-harvesting complex II of green plants studied by spectral hole burning and fluorescence line narrowing.
    Pieper J; Rätsep M; Irrgang KD; Freiberg A
    J Phys Chem B; 2009 Aug; 113(31):10870-80. PubMed ID: 19719274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond protein response to the chromophore isomerization of photoactive yellow protein: selective observation of tyrosine and tryptophan residues by time-resolved ultraviolet resonance Raman spectroscopy.
    Mizuno M; Hamada N; Tokunaga F; Mizutani Y
    J Phys Chem B; 2007 Jun; 111(23):6293-6. PubMed ID: 17523627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein.
    Joshi CP; Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2009 Oct; 48(42):9980-93. PubMed ID: 19764818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy.
    Mach H; Middaugh CR
    Anal Biochem; 1994 Nov; 222(2):323-31. PubMed ID: 7864355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes during the photocycle of photoactive yellow protein monitored by ultraviolet resonance raman spectra of tyrosine and tryptophan.
    El-Mashtoly SF; Yamauchi S; Kumauchi M; Hamada N; Tokunaga F; Unno M
    J Phys Chem B; 2005 Dec; 109(49):23666-73. PubMed ID: 16375346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable contributions of tyrosine residues to the structural and spectroscopic properties of the factor for inversion stimulation.
    Boswell S; Mathew J; Beach M; Osuna R; Colón W
    Biochemistry; 2004 Mar; 43(10):2964-77. PubMed ID: 15005633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of tryptophan and tyrosine residues in proteins by fourth-derivative spectroscopy.
    Bray MR; Carriere AD; Clarke AJ
    Anal Biochem; 1994 Sep; 221(2):278-84. PubMed ID: 7810867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Polarization of intrinsic fluorescence of proteins. II. Application for the study of equilibrium dynamics of tryptophan residues].
    Turoverov KK; Kuznetsova IM
    Mol Biol (Mosk); 1983; 17(3):468-74. PubMed ID: 6877228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary photoprocesses involved in the sensory protein for the photophobic response of Blepharisma japonicum.
    Brazard J; Ley C; Lacombat F; Plaza P; Martin MM; Checcucci G; Lenci F
    J Phys Chem B; 2008 Nov; 112(47):15182-94. PubMed ID: 18983186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Population of triplet-excited states of tryptophanyls and tyrosyls in proteins].
    L'vov KM; Kuznetsov SV; Bibikov SB; Kostikov AP
    Biofizika; 1993; 38(5):741-6. PubMed ID: 8241305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy.
    Nienhaus K; Renzi F; Vallone B; Wiedenmann J; Nienhaus GU
    Biochemistry; 2006 Oct; 45(43):12942-53. PubMed ID: 17059211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-driven decarboxylation of wild-type green fluorescent protein.
    Bell AF; Stoner-Ma D; Wachter RM; Tonge PJ
    J Am Chem Soc; 2003 Jun; 125(23):6919-26. PubMed ID: 12783544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.