These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27655938)
1. Detection of local chemical states of lithium and their spatial mapping by scanning transmission electron microscopy, electron energy-loss spectroscopy and hyperspectral image analysis. Muto S; Tatsumi K Microscopy (Oxf); 2017 Feb; 66(1):39-49. PubMed ID: 27655938 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. Nomura Y; Yamamoto K; Hirayama T; Ohkawa M; Igaki E; Hojo N; Saitoh K Nano Lett; 2018 Sep; 18(9):5892-5898. PubMed ID: 30130410 [TBL] [Abstract][Full Text] [Related]
3. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
4. Interface Limited Lithium Transport in Solid-State Batteries. Santhanagopalan D; Qian D; McGilvray T; Wang Z; Wang F; Camino F; Graetz J; Dudney N; Meng YS J Phys Chem Lett; 2014 Jan; 5(2):298-303. PubMed ID: 26270703 [TBL] [Abstract][Full Text] [Related]
5. Revealing the spatial and temporal distribution of different chemical states of lithium by EELS analysis using non-negative matrix factorization. Wang Z; Yu Y Micron; 2022 Mar; 154():103213. PubMed ID: 35051801 [TBL] [Abstract][Full Text] [Related]
6. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding. Nomura Y; Yamamoto K; Fujii M; Hirayama T; Igaki E; Saitoh K Nat Commun; 2020 Jun; 11(1):2824. PubMed ID: 32499493 [TBL] [Abstract][Full Text] [Related]
7. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Yamamoto K; Iriyama Y; Hirayama T Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy. Castro FC; Dravid VP Microsc Microanal; 2018 Jun; 24(3):214-220. PubMed ID: 29877170 [TBL] [Abstract][Full Text] [Related]
9. In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO Gong Y; Zhang J; Jiang L; Shi JA; Zhang Q; Yang Z; Zou D; Wang J; Yu X; Xiao R; Hu YS; Gu L; Li H; Chen L J Am Chem Soc; 2017 Mar; 139(12):4274-4277. PubMed ID: 28274118 [TBL] [Abstract][Full Text] [Related]
10. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. Wang F; Graetz J; Moreno MS; Ma C; Wu L; Volkov V; Zhu Y ACS Nano; 2011 Feb; 5(2):1190-7. PubMed ID: 21218844 [TBL] [Abstract][Full Text] [Related]
11. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope. Yakovlev S; Libera M Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395 [TBL] [Abstract][Full Text] [Related]
12. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. Zhang J; Lu Q; Fang J; Wang J; Yang J; NuLi Y ACS Appl Mater Interfaces; 2014 Oct; 6(20):17965-73. PubMed ID: 25229991 [TBL] [Abstract][Full Text] [Related]
13. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Lin F; Markus IM; Nordlund D; Weng TC; Asta MD; Xin HL; Doeff MM Nat Commun; 2014 Mar; 5():3529. PubMed ID: 24670975 [TBL] [Abstract][Full Text] [Related]
14. Application of machine learning techniques to electron microscopic/spectroscopic image data analysis. Muto S; Shiga M Microscopy (Oxf); 2020 Apr; 69(2):110-122. PubMed ID: 31682260 [TBL] [Abstract][Full Text] [Related]
15. Revealing the Distribution of Lithium Compounds in Lithium Dendrites by Four-Dimensional Electron Microscopy Analysis. Wang Z; Zhai W; Yu Y Nano Lett; 2024 Feb; 24(8):2537-2543. PubMed ID: 38372692 [TBL] [Abstract][Full Text] [Related]
16. Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. Leenheer AJ; Jungjohann KL; Zavadil KR; Sullivan JP; Harris CT ACS Nano; 2015 Apr; 9(4):4379-89. PubMed ID: 25785517 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Chowdhury S; Balasubramanian R Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086 [TBL] [Abstract][Full Text] [Related]
18. Chemical and structural stability of lithium-ion battery electrode materials under electron beam. Lin F; Markus IM; Doeff MM; Xin HL Sci Rep; 2014 Jul; 4():5694. PubMed ID: 25027190 [TBL] [Abstract][Full Text] [Related]
19. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Colliex C; Kociak M; Stéphan O Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606 [TBL] [Abstract][Full Text] [Related]