These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 27656024)

  • 1. Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations.
    Huang CG; Chacron MJ
    J Neurosci; 2016 Sep; 36(38):9859-72. PubMed ID: 27656024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel coding of first- and second-order stimulus attributes by midbrain electrosensory neurons.
    McGillivray P; Vonderschen K; Fortune ES; Chacron MJ
    J Neurosci; 2012 Apr; 32(16):5510-24. PubMed ID: 22514313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species.
    Martinez D; Metzen MG; Chacron MJ
    J Neurophysiol; 2016 Dec; 116(6):2909-2921. PubMed ID: 27683890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
    Savard M; Krahe R; Chacron MJ
    Neuroscience; 2011 Jan; 172():270-84. PubMed ID: 21035523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to second order stimulus features by electrosensory neurons causes ambiguity.
    Zhang ZD; Chacron MJ
    Sci Rep; 2016 Jun; 6():28716. PubMed ID: 27349635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features.
    Metzen MG; Chacron MJ
    J Neurosci; 2015 Feb; 35(7):3124-38. PubMed ID: 25698748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coding of envelopes by correlated but not single-neuron activity requires neural variability.
    Metzen MG; Jamali M; Carriot J; Ávila-Ǻkerberg O; Cullen KE; Chacron MJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4791-6. PubMed ID: 25825717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review.
    Huang CG; Chacron MJ
    Channels (Austin); 2017 Jul; 11(4):281-304. PubMed ID: 28277938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback optimizes neural coding and perception of natural stimuli.
    Huang CG; Metzen MG; Chacron MJ
    Elife; 2018 Oct; 7():. PubMed ID: 30289387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons.
    Metzen MG; Chacron MJ
    J Neurosci; 2021 Apr; 41(17):3822-3841. PubMed ID: 33687962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature extraction by burst-like spike patterns in multiple sensory maps.
    Metzner W; Koch C; Wessel R; Gabbiani F
    J Neurosci; 1998 Mar; 18(6):2283-300. PubMed ID: 9482813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.
    Fotowat H; Harrison RR; Krahe R
    J Neurosci; 2013 Aug; 33(34):13758-72. PubMed ID: 23966697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Descending pathways generate perception of and neural responses to weak sensory input.
    Metzen MG; Huang CG; Chacron MJ
    PLoS Biol; 2018 Jun; 16(6):e2005239. PubMed ID: 29939982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing.
    Metzen MG; Chacron MJ
    J Exp Biol; 2014 Apr; 217(Pt 8):1381-91. PubMed ID: 24363423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish.
    Vonderschen K; Chacron MJ
    J Neurophysiol; 2011 Dec; 106(6):3102-18. PubMed ID: 21940609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps.
    Mehaffey WH; Maler L; Turner RW
    J Neurophysiol; 2008 May; 99(5):2641-55. PubMed ID: 18367702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diversity of synaptic filters are created by temporal summation of excitation and inhibition.
    George AA; Lyons-Warren AM; Ma X; Carlson BA
    J Neurosci; 2011 Oct; 31(41):14721-34. PubMed ID: 21994388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.