These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 27656140)
1. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands. Atzori M; Cognolato M; Müller H Front Neurorobot; 2016; 10():9. PubMed ID: 27656140 [TBL] [Abstract][Full Text] [Related]
2. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition. Rouhafzay G; Cretu AM; Payeur P Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400 [TBL] [Abstract][Full Text] [Related]
3. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future. Li W; Shi P; Yu H Front Neurosci; 2021; 15():621885. PubMed ID: 33981195 [TBL] [Abstract][Full Text] [Related]
4. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks. Wang W; Chen B; Xia P; Hu J; Peng Y Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559 [TBL] [Abstract][Full Text] [Related]
5. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG. Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based artificial vision for grasp classification in myoelectric hands. Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Analysis of Hand Gesture Recognition with Temporal Convolutional Networks. Tsinganos P; Jansen B; Cornelis J; Skodras A Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270841 [TBL] [Abstract][Full Text] [Related]
8. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
9. Transfer learning in hand movement intention detection based on surface electromyography signals. Soroushmojdehi R; Javadzadeh S; Pedrocchi A; Gandolla M Front Neurosci; 2022; 16():977328. PubMed ID: 36440276 [TBL] [Abstract][Full Text] [Related]
10. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network. Zhai X; Jelfs B; Chan RHM; Tin C Front Neurosci; 2017; 11():379. PubMed ID: 28744189 [TBL] [Abstract][Full Text] [Related]
11. Vision-aided grasp classification: design and evaluation of compact CNN for prosthetic hands. Sharma U; Vasamsetti S; Chander SA; Datta B Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38697026 [TBL] [Abstract][Full Text] [Related]
12. High accurate lightweight deep learning method for gesture recognition based on surface electromyography. Bahador A; Yousefi M; Marashi M; Bahador O Comput Methods Programs Biomed; 2020 Oct; 195():105643. PubMed ID: 32650088 [TBL] [Abstract][Full Text] [Related]
13. S-Convnet: A Shallow Convolutional Neural Network Architecture for Neuromuscular Activity Recognition Using Instantaneous High-Density Surface EMG Images. Islam MR; Massicotte D; Nougarou F; Massicotte P; Zhu WP Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():744-749. PubMed ID: 33018094 [TBL] [Abstract][Full Text] [Related]
14. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data. Palermo F; Cognolato M; Gijsberts A; Muller H; Caputo B; Atzori M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1154-1159. PubMed ID: 28813977 [TBL] [Abstract][Full Text] [Related]
15. Classification of 41 Hand and Wrist Movements via Surface Electromyogram Using Deep Neural Network. Sri-Iesaranusorn P; Chaiyaroj A; Buekban C; Dumnin S; Pongthornseri R; Thanawattano C; Surangsrirat D Front Bioeng Biotechnol; 2021; 9():548357. PubMed ID: 34178951 [TBL] [Abstract][Full Text] [Related]
16. Effects of prosthesis use on the capability to control myoelectric robotic prosthetic hands. Atzori M; Hager AG; Elsig S; Giatsidis G; Bassetto F; Muller H Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3456-9. PubMed ID: 26737036 [TBL] [Abstract][Full Text] [Related]
17. The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics. Atzori M; Muller H Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7151-4. PubMed ID: 26737941 [TBL] [Abstract][Full Text] [Related]
18. Deep learning for electroencephalogram (EEG) classification tasks: a review. Craik A; He Y; Contreras-Vidal JL J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014 [TBL] [Abstract][Full Text] [Related]
19. Motion intention recognition of the affected hand based on the sEMG and improved DenseNet network. Niu Q; Shi L; Niu Y; Jia K; Fan G; Gui R; Wang L Heliyon; 2024 Mar; 10(5):e26763. PubMed ID: 38444500 [TBL] [Abstract][Full Text] [Related]
20. Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping. Cognolato M; Atzori M; Gassert R; Müller H Front Artif Intell; 2021; 4():744476. PubMed ID: 35146422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]