These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The emergence and transient behaviour of collective motion in active filament systems. Suzuki R; Bausch AR Nat Commun; 2017 Jun; 8(1):41. PubMed ID: 28659581 [TBL] [Abstract][Full Text] [Related]
3. Understanding collective dynamics of soft active colloids by binary scattering. Hanke T; Weber CA; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052309. PubMed ID: 24329266 [TBL] [Abstract][Full Text] [Related]
7. Collective motion of driven semiflexible filaments tuned by soft repulsion and stiffness. Moore JM; Thompson TN; Glaser MA; Betterton MD Soft Matter; 2020 Oct; 16(41):9436-9442. PubMed ID: 32959862 [TBL] [Abstract][Full Text] [Related]
8. Pattern-induced local symmetry breaking in active-matter systems. Denk J; Frey E Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31623-31630. PubMed ID: 33257541 [TBL] [Abstract][Full Text] [Related]
9. Mean-field model for nematic alignment of self-propelled rods. Perepelitsa M; Timofeyev I; Murphy P; Igoshin OA Phys Rev E; 2022 Sep; 106(3-1):034613. PubMed ID: 36266908 [TBL] [Abstract][Full Text] [Related]
10. Critical assessment of the Boltzmann approach to active systems. Thüroff F; Weber CA; Frey E Phys Rev Lett; 2013 Nov; 111(19):190601. PubMed ID: 24266464 [TBL] [Abstract][Full Text] [Related]
11. Breakdown of Boltzmann-type models for the alignment of self-propelled rods. Murphy P; Perepelitsa M; Timofeyev I; Lieber-Kotz M; Islas B; Igoshin OA Math Biosci; 2024 Oct; 376():109266. PubMed ID: 39127094 [TBL] [Abstract][Full Text] [Related]
12. Collective motion of binary self-propelled particle mixtures. Menzel AM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249 [TBL] [Abstract][Full Text] [Related]
13. Gliding filament system giving both global orientational order and clusters in collective motion. Tanida S; Furuta K; Nishikawa K; Hiraiwa T; Kojima H; Oiwa K; Sano M Phys Rev E; 2020 Mar; 101(3-1):032607. PubMed ID: 32289972 [TBL] [Abstract][Full Text] [Related]
14. Three-body interactions drive the transition to polar order in a simple flocking model. Chatterjee P; Goldenfeld N Phys Rev E; 2019 Oct; 100(4-1):040602. PubMed ID: 31770962 [TBL] [Abstract][Full Text] [Related]
15. A diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. VI. Binary collision approximations for the memory function for self-correlation functions. Noah-Vanhoucke JE; Andersen HC J Chem Phys; 2007 Aug; 127(6):064502. PubMed ID: 17705607 [TBL] [Abstract][Full Text] [Related]
16. Emergence of macroscopic directed motion in populations of motile colloids. Bricard A; Caussin JB; Desreumaux N; Dauchot O; Bartolo D Nature; 2013 Nov; 503(7474):95-8. PubMed ID: 24201282 [TBL] [Abstract][Full Text] [Related]
17. Do hydrodynamically assisted binary collisions lead to orientational ordering of microswimmers? Oyama N; Molina JJ; Yamamoto R Eur Phys J E Soft Matter; 2017 Nov; 40(11):95. PubMed ID: 29110098 [TBL] [Abstract][Full Text] [Related]
18. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles. Chou YL; Ihle T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022103. PubMed ID: 25768454 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of scattering in undulatory active collisions. Rieser JM; Schiebel PE; Pazouki A; Qian F; Goddard Z; Wiesenfeld K; Zangwill A; Negrut D; Goldman DI Phys Rev E; 2019 Feb; 99(2-1):022606. PubMed ID: 30934288 [TBL] [Abstract][Full Text] [Related]
20. Pattern formation and phase transition in the collective dynamics of a binary mixture of polar self-propelled particles. Adhikary S; Santra SB Phys Rev E; 2022 Jun; 105(6-1):064612. PubMed ID: 35854615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]