BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2765646)

  • 1. Continuous fluorescence microphotolysis of anthracene-labeled phospholipids in membranes. Theoretical approach of the simultaneous determination of their photodimerization and lateral diffusion rates.
    Ferrières X; Lopez A; Altibelli A; Dupou-Cezanne L; Lagouanelle JL; Tocanne JF
    Biophys J; 1989 Jun; 55(6):1081-91. PubMed ID: 2765646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Critical comparison of analytical solutions, and a new mathematical method for calculation of diffusion coefficient D.
    Lopez A; Dupou L; Altibelli A; Trotard J; Tocanne JF
    Biophys J; 1988 Jun; 53(6):963-70. PubMed ID: 3395663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of the lateral motion of extrinsic probes and anthracene-labelled constitutive phospholipids in the plasma membrane of Chinese hamster ovary cells.
    Dupou L; Lopez A; Tocanne JF
    Eur J Biochem; 1988 Feb; 171(3):669-74. PubMed ID: 3345753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis.
    Peters R; Beck K
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7183-7. PubMed ID: 6580635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral diffusion measurement at high spatial resolution by scanning microphotolysis in a confocal microscope.
    Kubitscheck U; Wedekind P; Peters R
    Biophys J; 1994 Sep; 67(3):948-56. PubMed ID: 7811951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of fluorescent probes localization in membranes by nonradiative energy transfer.
    Dobretsov GE; Kurek NK; Machov VN; Syrejshchikova TI; Yakimenko MN
    J Biochem Biophys Methods; 1989 Oct; 19(4):259-74. PubMed ID: 2614002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion measurement of fluorescence-labeled amphiphilic molecules with a standard fluorescence microscope.
    Dietrich C; Merkel R; Tampé R
    Biophys J; 1997 Apr; 72(4):1701-10. PubMed ID: 9083674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of restricted rotational diffusion of fluorescent lipids in supported planar phospholipid monolayers using angle-dependent polarized fluorescence photobleaching recovery.
    Timbs MM; Thompson NL
    Biopolymers; 1993 Jan; 33(1):45-57. PubMed ID: 8427938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of rotational motion in membranes using fluorescence recovery after photobleaching.
    Smith LM; Weis RM; McConnell HM
    Biophys J; 1981 Oct; 36(1):73-91. PubMed ID: 7284556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-induced dimerization of anthracene phospholipids for the study of the lateral distribution of lipids in membranes.
    de Bony J; Tocanne JF
    Eur J Biochem; 1984 Sep; 143(2):373-9. PubMed ID: 6468400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching.
    Yguerabide J; Schmidt JA; Yguerabide EE
    Biophys J; 1982 Oct; 40(1):69-75. PubMed ID: 7139035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous fluorescence microphotolysis: A sensitive method for study of diffusion processes in single cells.
    Peters R; Brünger A; Schulten K
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):962-6. PubMed ID: 16592981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipyrenylphosphatidylcholines as membrane fluidity probes. Relationship between intramolecular and intermolecular excimer formation rates.
    Vauhkonen M; Sassaroli M; Somerharju P; Eisinger J
    Biophys J; 1990 Feb; 57(2):291-300. PubMed ID: 2317551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micrometer-scale domains in fibroblast plasma membranes.
    Yechiel E; Edidin M
    J Cell Biol; 1987 Aug; 105(2):755-60. PubMed ID: 3624308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational diffusion of bovine prothrombin fragment 1 weakly bound to supported planar membranes: measurement by total internal reflection with fluorescence pattern photobleaching recovery.
    Huang Z; Pearce KH; Thompson NL
    Biophys J; 1994 Oct; 67(4):1754-66. PubMed ID: 7819508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles.
    García-Sáez AJ; Carrer DC; Schwille P
    Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties of lipid monolayers on alkylated planar glass surfaces.
    von Tscharner V; McConnell HM
    Biophys J; 1981 Nov; 36(2):421-7. PubMed ID: 7306664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy.
    Thompson NL; Burghardt TP; Axelrod D
    Biophys J; 1981 Mar; 33(3):435-54. PubMed ID: 7225515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theory of fluorescence polarization decay in membranes.
    Kinosita K; Kawato S; Ikegami A
    Biophys J; 1977 Dec; 20(3):289-305. PubMed ID: 922121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic incorporation of 9-(2-anthryl)-nonanoic acid, a new fluorescent and photoactivable probe, into the membrane lipids of Chinese hamster ovary cells.
    Dupou L; Teissié J; Tocanne JF
    Eur J Biochem; 1986 Jan; 154(1):171-7. PubMed ID: 3510867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.