BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27657141)

  • 1. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.
    Chockalingam S; Aluru M; Aluru S
    Microarrays (Basel); 2016 Sep; 5(3):. PubMed ID: 27657141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study.
    Feltus FA; Ficklin SP; Gibson SM; Smith MC
    BMC Syst Biol; 2013 Jun; 7():44. PubMed ID: 23738693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks.
    Aluru M; Shrivastava H; Chockalingam SP; Shivakumar S; Aluru S
    Bioinformatics; 2022 Feb; 38(5):1312-1319. PubMed ID: 34888624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PlantExpress: A Database Integrating OryzaExpress and ArthaExpress for Single-species and Cross-species Gene Expression Network Analyses with Microarray-Based Transcriptome Data.
    Kudo T; Terashima S; Takaki Y; Tomita K; Saito M; Kanno M; Yokoyama K; Yano K
    Plant Cell Physiol; 2017 Jan; 58(1):e1. PubMed ID: 28158643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consensus and Meta-analysis regulatory networks for combining multiple microarray gene expression datasets.
    Steele E; Tucker A
    J Biomed Inform; 2008 Dec; 41(6):914-26. PubMed ID: 18337190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse engineering and analysis of large genome-scale gene networks.
    Aluru M; Zola J; Nettleton D; Aluru S
    Nucleic Acids Res; 2013 Jan; 41(1):e24. PubMed ID: 23042249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Mutual Information Based Construction of Genome-Scale Networks on the Intel® Xeon Phi™ Coprocessor.
    Misra S; Pamnany K; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1008-20. PubMed ID: 26451815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring gene regulatory networks from multiple microarray datasets.
    Wang Y; Joshi T; Zhang XS; Xu D; Chen L
    Bioinformatics; 2006 Oct; 22(19):2413-20. PubMed ID: 16864593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consistency of biological networks inferred from microarray and sequencing data.
    Vinciotti V; Wit EC; Jansen R; de Geus EJ; Penninx BW; Boomsma DI; 't Hoen PA
    BMC Bioinformatics; 2016 Jun; 17():254. PubMed ID: 27342572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana.
    Aceituno FF; Moseyko N; Rhee SY; Gutiérrez RA
    BMC Genomics; 2008 Sep; 9():438. PubMed ID: 18811951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of RNA-seq- and microarray-derived coexpression networks in Arabidopsis thaliana.
    Giorgi FM; Del Fabbro C; Licausi F
    Bioinformatics; 2013 Mar; 29(6):717-24. PubMed ID: 23376351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ExpressYourself: A modular platform for processing and visualizing microarray data.
    Luscombe NM; Royce TE; Bertone P; Echols N; Horak CE; Chang JT; Snyder M; Gerstein M
    Nucleic Acids Res; 2003 Jul; 31(13):3477-82. PubMed ID: 12824348
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Zogopoulos VL; Saxami G; Malatras A; Angelopoulou A; Jen CH; Duddy WJ; Daras G; Hatzopoulos P; Westhead DR; Michalopoulos I
    iScience; 2021 Aug; 24(8):102848. PubMed ID: 34381973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks.
    Liesecke F; Daudu D; Dugé de Bernonville R; Besseau S; Clastre M; Courdavault V; de Craene JO; Crèche J; Giglioli-Guivarc'h N; Glévarec G; Pichon O; Dugé de Bernonville T
    Sci Rep; 2018 Jul; 8(1):10885. PubMed ID: 30022075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filter versus wrapper gene selection approaches in DNA microarray domains.
    Inza I; Larrañaga P; Blanco R; Cerrolaza AJ
    Artif Intell Med; 2004 Jun; 31(2):91-103. PubMed ID: 15219288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AtCAST, a tool for exploring gene expression similarities among DNA microarray experiments using networks.
    Sasaki E; Takahashi C; Asami T; Shimada Y
    Plant Cell Physiol; 2011 Jan; 52(1):169-80. PubMed ID: 21113043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring gene expression networks with hubs using a degree weighted Lasso approach.
    Sulaimanov N; Kumar S; Burdet F; Ibberson M; Pagni M; Koeppl H
    Bioinformatics; 2019 Mar; 35(6):987-994. PubMed ID: 30165436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.
    Amrine KC; Blanco-Ulate B; Cantu D
    PLoS One; 2015; 10(3):e0118731. PubMed ID: 25730421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.